Abstract
Streptomyces reticuli harbors an msiK gene which encodes a protein with an amino acid identify of 90% to a corresponding protein previously identified in Streptomyces lividans. Immunological studies revealed that S. lividans and S. reticuli synthesize their highest levels of MsiK during growth with cellobiose, but not with glucose. Moreover, moderate amounts of MsiK are produced by both species in the course of growth with maltose, melibiose, and xylose and by S. lividans in the presence of xylobiose and raffinose. In contrast, a recently identified cellobiose-binding protein and its distantly related homolog were only found if S. reticuli or S. lividans, respectively, was cultivated with cellobiose. Uptake of cellobiose and maltose was tested and ascertained for S. reticuli and S. lividans, but not for an msiK S. lividans mutant. However, transformants of this mutant carrying the S. reticuli or S. lividans msiK gene on a multicopy plasmid had regained the ability to transport both sugars. The data show that MsiK assists two ABC transport systems.
Full Text
The Full Text of this article is available as a PDF (248.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alloing G., de Philip P., Claverys J. P. Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positive Streptococcus pneumoniae. J Mol Biol. 1994 Aug 5;241(1):44–58. doi: 10.1006/jmbi.1994.1472. [DOI] [PubMed] [Google Scholar]
- Ames G. F. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem. 1986;55:397–425. doi: 10.1146/annurev.bi.55.070186.002145. [DOI] [PubMed] [Google Scholar]
- Beck S., Pohl F. M. DNA sequencing with direct blotting electrophoresis. EMBO J. 1984 Dec 1;3(12):2905–2909. doi: 10.1002/j.1460-2075.1984.tb02230.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
- Hekstra D., Tommassen J. Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli. J Bacteriol. 1993 Oct;175(20):6546–6552. doi: 10.1128/jb.175.20.6546-6552.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
- Hurtubise Y., Shareck F., Kluepfel D., Morosoli R. A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. Mol Microbiol. 1995 Jul;17(2):367–377. doi: 10.1111/j.1365-2958.1995.mmi_17020367.x. [DOI] [PubMed] [Google Scholar]
- Kellermann O., Szmelcman S. Active transport of maltose in Escherichia coli K12. Involvement of a "periplasmic" maltose binding protein. Eur J Biochem. 1974 Aug 15;47(1):139–149. doi: 10.1111/j.1432-1033.1974.tb03677.x. [DOI] [PubMed] [Google Scholar]
- Kustu S. G., Ames G. F. The hisP protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component. J Bacteriol. 1973 Oct;116(1):107–113. doi: 10.1128/jb.116.1.107-113.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mathiopoulos C., Mueller J. P., Slack F. J., Murphy C. G., Patankar S., Bukusoglu G., Sonenshein A. L. A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol Microbiol. 1991 Aug;5(8):1903–1913. doi: 10.1111/j.1365-2958.1991.tb00814.x. [DOI] [PubMed] [Google Scholar]
- Raibaud O., Roa M., Braun-Breton C., Schwartz M. Structure of the malB region in Escherichia coli K12. I. Genetic map of the malK-lamB operon. Mol Gen Genet. 1979 Jul 24;174(3):241–248. doi: 10.1007/BF00267796. [DOI] [PubMed] [Google Scholar]
- Russell R. R., Aduse-Opoku J., Sutcliffe I. C., Tao L., Ferretti J. J. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem. 1992 Mar 5;267(7):4631–4637. [PubMed] [Google Scholar]
- Schlochtermeier A., Niemeyer F., Schrempf H. Biochemical and Electron Microscopic Studies of the Streptomyces reticuli Cellulase (Avicelase) in Its Mycelium-Associated and Extracellular Forms. Appl Environ Microbiol. 1992 Oct;58(10):3240–3248. doi: 10.1128/aem.58.10.3240-3248.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlochtermeier A., Walter S., Schröder J., Moorman M., Schrempf H. The gene encoding the cellulase (Avicelase) Cel1 from Streptomyces reticuli and analysis of protein domains. Mol Microbiol. 1992 Dec;6(23):3611–3621. doi: 10.1111/j.1365-2958.1992.tb01797.x. [DOI] [PubMed] [Google Scholar]
- Schlösser A., Schrempf H. A lipid-anchored binding protein is a component of an ATP-dependent cellobiose/cellotriose-transport system from the cellulose degrader Streptomyces reticuli. Eur J Biochem. 1996 Dec 1;242(2):332–338. doi: 10.1111/j.1432-1033.1996.0332r.x. [DOI] [PubMed] [Google Scholar]
- Schneider E., Walter C. A chimeric nucleotide-binding protein, encoded by a hisP-malK hybrid gene, is functional in maltose transport in Salmonella typhimurium. Mol Microbiol. 1991 Jun;5(6):1375–1383. doi: 10.1111/j.1365-2958.1991.tb00784.x. [DOI] [PubMed] [Google Scholar]
- Wachinger G., Bronnenmeier K., Staudenbauer W. L., Schrempf H. Identification of Mycelium-Associated Cellulase from Streptomyces reticuli. Appl Environ Microbiol. 1989 Oct;55(10):2653–2657. doi: 10.1128/aem.55.10.2653-2657.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter S., Schrempf H. Physiological Studies of Cellulase (Avicelase) Synthesis in Streptomyces reticuli. Appl Environ Microbiol. 1996 Mar;62(3):1065–1069. doi: 10.1128/aem.62.3.1065-1069.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter S., Schrempf H. Studies of Streptomyces reticuli cel-1 (cellulase) gene expression in Streptomyces strains, Escherichia coli, and Bacillus subtilis. Appl Environ Microbiol. 1995 Feb;61(2):487–494. doi: 10.1128/aem.61.2.487-494.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilken S., Schmees G., Schneider E. A putative helical domain in the MalK subunit of the ATP-binding-cassette transport system for maltose of Salmonella typhimurium (MalFGK2) is crucial for interaction with MalF and MalG. A study using the LacK protein of Agrobacterium radiobacter as a tool. Mol Microbiol. 1996 Nov;22(4):655–666. doi: 10.1046/j.1365-2958.1996.d01-1724.x. [DOI] [PubMed] [Google Scholar]