Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(7):2116–2125. doi: 10.1128/jb.179.7.2116-2125.1997

Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene.

D DeShazer 1, P J Brett 1, R Carlyon 1, D E Woods 1
PMCID: PMC178945  PMID: 9079894

Abstract

Burkholderia pseudomallei is a human and animal pathogen in tropical regions, especially Southeast Asia and northern Australia. Currently little is known about the genetics and molecular biology of this organism. In this report, we describe the mutagenesis of B. pseudomallei with the transposon Tn5-OT182. B. pseudomallei 1026b transposon mutants were obtained at a frequency of 4.6 x 10(-4) per initial donor cell, and the transposon inserted randomly into the chromosome. We used Tn5-OT182 to identify the flagellin structural gene, fliC. We screened 3,500 transposon mutants and identified 28 motility mutants. Tn5-OT182 integrated into 19 unique genetic loci encoding proteins with homology to Escherichia coli and Salmonella typhimurium flagellar and chemotaxis proteins. Two mutants, MM35 and MM36, contained Tn5-OT182 integrations in fliC. We cloned and sequenced fliC and used it to complement MM35 and MM36 in trans. The fliC transcriptional start site and a sigmaF-like promoter were identified by primer extension analysis. We observed a significant difference in the expression of two distinct fliC-lacZ transcriptional fusions during bacterial growth, suggesting the presence of a latent intragenic transcriptional terminator in fliC. There was no significant difference in the virulence of 1026b compared to that of MM36 in diabetic rats or Syrian hamsters, suggesting that flagella and/or motility are probably not virulence determinants in these animal models of B. pseudomallei infection. A phylogenetic analysis based on the flagellins from a variety of bacterial species supported the recent transfer of B. pseudomallei from the genus Pseudomonas to Burkholderia.

Full Text

The Full Text of this article is available as a PDF (916.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerley B. J., Miller J. F. Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol. 1993 Jun;175(11):3468–3479. doi: 10.1128/jb.175.11.3468-3479.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Ashdown L. R., Koehler J. M. Production of hemolysin and other extracellular enzymes by clinical isolates of Pseudomonas pseudomallei. J Clin Microbiol. 1990 Oct;28(10):2331–2334. doi: 10.1128/jcm.28.10.2331-2334.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Behammer W., Shao Z., Mages W., Rachel R., Stetter K. O., Schmitt R. Flagellar structure and hyperthermophily: analysis of a single flagellin gene and its product in Aquifex pyrophilus. J Bacteriol. 1995 Nov;177(22):6630–6637. doi: 10.1128/jb.177.22.6630-6637.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belas R., Flaherty D. Sequence and genetic analysis of multiple flagellin-encoding genes from Proteus mirabilis. Gene. 1994 Oct 11;148(1):33–41. doi: 10.1016/0378-1119(94)90230-5. [DOI] [PubMed] [Google Scholar]
  6. Blair D. F. How bacteria sense and swim. Annu Rev Microbiol. 1995;49:489–522. doi: 10.1146/annurev.mi.49.100195.002421. [DOI] [PubMed] [Google Scholar]
  7. Brett P. J., Mah D. C., Woods D. E. Isolation and characterization of Pseudomonas pseudomallei flagellin proteins. Infect Immun. 1994 May;62(5):1914–1919. doi: 10.1128/iai.62.5.1914-1919.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burton Z. F., Gross C. A., Watanabe K. K., Burgess R. R. The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Cell. 1983 Feb;32(2):335–349. doi: 10.1016/0092-8674(83)90453-1. [DOI] [PubMed] [Google Scholar]
  9. Champion C. I., Miller J. N., Lovett M. A., Blanco D. R. Cloning, sequencing, and expression of two class B endoflagellar genes of Treponema pallidum subsp. pallidum encoding the 34.5- and 31.0-kilodalton proteins. Infect Immun. 1990 Jun;58(6):1697–1704. doi: 10.1128/iai.58.6.1697-1704.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chaowagul W., White N. J., Dance D. A., Wattanagoon Y., Naigowit P., Davis T. M., Looareesuwan S., Pitakwatchara N. Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis. 1989 May;159(5):890–899. doi: 10.1093/infdis/159.5.890. [DOI] [PubMed] [Google Scholar]
  11. Dance D. A., Wuthiekanun V., Naigowit P., White N. J. Identification of Pseudomonas pseudomallei in clinical practice: use of simple screening tests and API 20NE. J Clin Pathol. 1989 Jun;42(6):645–648. doi: 10.1136/jcp.42.6.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dons L., Rasmussen O. F., Olsen J. E. Cloning and characterization of a gene encoding flagellin of Listeria monocytogenes. Mol Microbiol. 1992 Oct;6(20):2919–2929. doi: 10.1111/j.1365-2958.1992.tb01751.x. [DOI] [PubMed] [Google Scholar]
  14. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  15. Gassmann G. S., Jacobs E., Deutzmann R., Göbel U. B. Analysis of the Borrelia burgdorferi GeHo fla gene and antigenic characterization of its gene product. J Bacteriol. 1991 Feb;173(4):1452–1459. doi: 10.1128/jb.173.4.1452-1459.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guerry P., Logan S. M., Thornton S., Trust T. J. Genomic organization and expression of Campylobacter flagellin genes. J Bacteriol. 1990 Apr;172(4):1853–1860. doi: 10.1128/jb.172.4.1853-1860.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harshey R. M., Estepa G., Yanagi H. Cloning and nucleotide sequence of a flagellin-coding gene (hag) from Serratia marcescens 274. Gene. 1989 Jun 30;79(1):1–8. doi: 10.1016/0378-1119(89)90087-5. [DOI] [PubMed] [Google Scholar]
  18. Helmann J. D. Alternative sigma factors and the regulation of flagellar gene expression. Mol Microbiol. 1991 Dec;5(12):2875–2882. doi: 10.1111/j.1365-2958.1991.tb01847.x. [DOI] [PubMed] [Google Scholar]
  19. Helmann J. D., Chamberlin M. J. DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6422–6424. doi: 10.1073/pnas.84.18.6422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heuner K., Bender-Beck L., Brand B. C., Lück P. C., Mann K. H., Marre R., Ott M., Hacker J. Cloning and genetic characterization of the flagellum subunit gene (flaA) of Legionella pneumophila serogroup 1. Infect Immun. 1995 Jul;63(7):2499–2507. doi: 10.1128/iai.63.7.2499-2507.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Homma M., Fujita H., Yamaguchi S., Iino T. Regions of Salmonella typhimurium flagellin essential for its polymerization and excretion. J Bacteriol. 1987 Jan;169(1):291–296. doi: 10.1128/jb.169.1.291-296.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones A. L., Beveridge T. J., Woods D. E. Intracellular survival of Burkholderia pseudomallei. Infect Immun. 1996 Mar;64(3):782–790. doi: 10.1128/iai.64.3.782-790.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Joys T. M. The covalent structure of the phase-1 flagellar filament protein of Salmonella typhimurium and its comparison with other flagellins. J Biol Chem. 1985 Dec 15;260(29):15758–15761. [PubMed] [Google Scholar]
  24. Kapatral V., Minnich S. A. Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol Microbiol. 1995 Jul;17(1):49–56. doi: 10.1111/j.1365-2958.1995.mmi_17010049.x. [DOI] [PubMed] [Google Scholar]
  25. Komeda Y., Icho T., Iino T. Effects of galU mutation on flagellar formation in Escherichia coli. J Bacteriol. 1977 Feb;129(2):908–915. doi: 10.1128/jb.129.2.908-915.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Koopman M. B., Baats E., de Leeuw O. S., van der Zeijst B. A., Kusters J. G. Molecular analysis of a flagellar core protein gene of Serpulina (Treponema) hyodysenteriae. J Gen Microbiol. 1993 Aug;139(8):1701–1706. doi: 10.1099/00221287-139-8-1701. [DOI] [PubMed] [Google Scholar]
  27. Kuwajima G., Asaka J., Fujiwara T., Fujiwara T., Node K., Kondo E. Nucleotide sequence of the hag gene encoding flagellin of Escherichia coli. J Bacteriol. 1986 Dec;168(3):1479–1483. doi: 10.1128/jb.168.3.1479-1483.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Leying H., Suerbaum S., Geis G., Haas R. Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol Microbiol. 1992 Oct;6(19):2863–2874. doi: 10.1111/j.1365-2958.1992.tb01466.x. [DOI] [PubMed] [Google Scholar]
  29. Limberger R. J., Slivienski L. L., Yelton D. B., Charon N. W. Molecular genetic analysis of a class B periplasmic-flagellum gene of Treponema phagedenis. J Bacteriol. 1992 Oct;174(20):6404–6410. doi: 10.1128/jb.174.20.6404-6410.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Logan S. M., Trust T. J., Guerry P. Evidence for posttranslational modification and gene duplication of Campylobacter flagellin. J Bacteriol. 1989 Jun;171(6):3031–3038. doi: 10.1128/jb.171.6.3031-3038.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lövgren A., Zhang M. Y., Engström A., Landén R. Identification of two expressed flagellin genes in the insect pathogen Bacillus thuringiensis subsp. alesti. J Gen Microbiol. 1993 Jan;139(1):21–30. doi: 10.1099/00221287-139-1-21. [DOI] [PubMed] [Google Scholar]
  32. Madden T. L., Tatusov R. L., Zhang J. Applications of network BLAST server. Methods Enzymol. 1996;266:131–141. doi: 10.1016/s0076-6879(96)66011-x. [DOI] [PubMed] [Google Scholar]
  33. Martin J. H., Savage D. C. Cloning, nucleotide sequence, and taxonomic implications of the flagellin gene of Roseburia cecicola. J Bacteriol. 1988 Jun;170(6):2612–2617. doi: 10.1128/jb.170.6.2612-2617.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Merriman T. R., Lamont I. L. Construction and use of a self-cloning promoter probe vector for gram-negative bacteria. Gene. 1993 Apr 15;126(1):17–23. doi: 10.1016/0378-1119(93)90585-q. [DOI] [PubMed] [Google Scholar]
  35. Milton D. L., O'Toole R., Horstedt P., Wolf-Watz H. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol. 1996 Mar;178(5):1310–1319. doi: 10.1128/jb.178.5.1310-1319.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mirel D. B., Chamberlin M. J. The Bacillus subtilis flagellin gene (hag) is transcribed by the sigma 28 form of RNA polymerase. J Bacteriol. 1989 Jun;171(6):3095–3101. doi: 10.1128/jb.171.6.3095-3101.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mitchison M., Rood J. I., Faine S., Adler B. Molecular analysis of a Leptospira borgpetersenii gene encoding an endoflagellar subunit protein. J Gen Microbiol. 1991 Jul;137(7):1529–1536. doi: 10.1099/00221287-137-7-1529. [DOI] [PubMed] [Google Scholar]
  38. Moens S., Michiels K., Keijers V., Van Leuven F., Vanderleyden J. Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. J Bacteriol. 1995 Oct;177(19):5419–5426. doi: 10.1128/jb.177.19.5419-5426.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Moens S., Vanderleyden J. Functions of bacterial flagella. Crit Rev Microbiol. 1996;22(2):67–100. doi: 10.3109/10408419609106456. [DOI] [PubMed] [Google Scholar]
  40. Mongkolsuk S., Rabibhadana S., Vattanaviboon P., Loprasert S. Generalized and mobilizable positive-selection cloning vectors. Gene. 1994 May 27;143(1):145–146. doi: 10.1016/0378-1119(94)90620-3. [DOI] [PubMed] [Google Scholar]
  41. Mytelka D. S., Chamberlin M. J. Escherichia coli fliAZY operon. J Bacteriol. 1996 Jan;178(1):24–34. doi: 10.1128/jb.178.1.24-34.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Noppa L., Burman N., Sadziene A., Barbour A. G., Bergström S. Expression of the flagellin gene in Borrelia is controlled by an alternative sigma factor. Microbiology. 1995 Jan;141(Pt 1):85–93. doi: 10.1099/00221287-141-1-85. [DOI] [PubMed] [Google Scholar]
  43. Nuijten P. J., van Asten F. J., Gaastra W., van der Zeijst B. A. Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem. 1990 Oct 15;265(29):17798–17804. [PubMed] [Google Scholar]
  44. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pallesen L., Hindersson P. Cloning and sequencing of a Treponema pallidum gene encoding a 31.3-kilodalton endoflagellar subunit (FlaB2). Infect Immun. 1989 Jul;57(7):2166–2172. doi: 10.1128/iai.57.7.2166-2172.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pleier E., Schmitt R. Identification and sequence analysis of two related flagellin genes in Rhizobium meliloti. J Bacteriol. 1989 Mar;171(3):1467–1475. doi: 10.1128/jb.171.3.1467-1475.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Richardson J. P. Preventing the synthesis of unused transcripts by Rho factor. Cell. 1991 Mar 22;64(6):1047–1049. doi: 10.1016/0092-8674(91)90257-y. [DOI] [PubMed] [Google Scholar]
  48. Sato N. A cold-regulated cyanobacterial gene cluster encodes RNA-binding protein and ribosomal protein S21. Plant Mol Biol. 1994 Mar;24(5):819–823. doi: 10.1007/BF00029864. [DOI] [PubMed] [Google Scholar]
  49. Schuster S. C., Bauer M., Kellermann J., Lottspeich F., Baeuerlein E. Nucleotide sequence of the Wolinella succinogenes flagellin, which contains in the antigenic domain two conserved regions also present in Campylobacter spp. and Helicobacter pylori. J Bacteriol. 1994 Aug;176(16):5151–5155. doi: 10.1128/jb.176.16.5151-5155.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Simon R., Quandt J., Klipp W. New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Gene. 1989 Aug 1;80(1):161–169. doi: 10.1016/0378-1119(89)90262-x. [DOI] [PubMed] [Google Scholar]
  51. Suerbaum S., Josenhans C., Labigne A. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange. J Bacteriol. 1993 Jun;175(11):3278–3288. doi: 10.1128/jb.175.11.3278-3288.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tominaga A., Mahmoud M. A., Mukaihara T., Enomoto M. Molecular characterization of intact, but cryptic, flagellin genes in the genus Shigella. Mol Microbiol. 1994 Apr;12(2):277–285. doi: 10.1111/j.1365-2958.1994.tb01016.x. [DOI] [PubMed] [Google Scholar]
  53. Totten P. A., Lory S. Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK. J Bacteriol. 1990 Dec;172(12):7188–7199. doi: 10.1128/jb.172.12.7188-7199.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Versalovic J., Koeuth T., Britton R., Geszvain K., Lupski J. R. Conservation and evolution of the rpsU-dnaG-rpoD macromolecular synthesis operon in bacteria. Mol Microbiol. 1993 Apr;8(2):343–355. doi: 10.1111/j.1365-2958.1993.tb01578.x. [DOI] [PubMed] [Google Scholar]
  55. Weissborn A. C., Liu Q., Rumley M. K., Kennedy E. P. UTP: alpha-D-glucose-1-phosphate uridylyltransferase of Escherichia coli: isolation and DNA sequence of the galU gene and purification of the enzyme. J Bacteriol. 1994 May;176(9):2611–2618. doi: 10.1128/jb.176.9.2611-2618.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Winstanley C., Morgan J. A., Pickup R. W., Saunders J. R. Molecular cloning of two Pseudomonas flagellin genes and basal body structural genes. Microbiology. 1994 Aug;140(Pt 8):2019–2031. doi: 10.1099/13500872-140-8-2019. [DOI] [PubMed] [Google Scholar]
  57. Woods D. E., Jones A. L., Hill P. J. Interaction of insulin with Pseudomonas pseudomallei. Infect Immun. 1993 Oct;61(10):4045–4050. doi: 10.1128/iai.61.10.4045-4050.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. doi: 10.1111/j.1348-0421.1992.tb02129.x. [DOI] [PubMed] [Google Scholar]
  59. de Lorenzo V., Timmis K. N. Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol. 1994;235:386–405. doi: 10.1016/0076-6879(94)35157-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES