Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(7):2126–2131. doi: 10.1128/jb.179.7.2126-2131.1997

A virulent isolate of Salmonella enteritidis produces a Salmonella typhi-like lipopolysaccharide.

M M Rahman 1, J Guard-Petter 1, R W Carlson 1
PMCID: PMC178946  PMID: 9079895

Abstract

The lipopolysaccharide (LPS) of Salmonella enteritidis has been implicated as a virulence factor of this organism. Therefore, the LPS from a stable virulent isolate, SE6-E21, was compared with that from an avirulent isolate, SE6-E5. The LPSs were extracted, and the high-molecular-weight (HMW) LPS was separated from the low-molecular-weight (LMW) LPS for both isolates. Both the HMW and LMW LPSs were characterized by glycosyl composition and linkage analyses. Immunochemical characterization was performed by Western blotting using factor 9 antiserum and using S. typhimurium antiserum which contains factors 1, 4, 5, and 12(2). In addition, the polysaccharides released by mild acid hydrolysis were isolated and subjected to hydrolysis by bacteriophage P22, which contains endorhamnosidase activity. The resulting oligosaccharides were purified by using Bio-Gel P4 gel permeation chromatography and characterized by nuclear magnetic resonance spectroscopy, fast atom bombardment mass spectrometry (FAB-MS), tandem MS-MS, and matrix-assisted laser desorption time of flight MS. The results show that the HMW LPS O-antigen polysaccharides from both isolates are comprised of two different repeating units, -[-->2)-[alpha-Tyvp-(1-->3)]beta-D-Manp-(1-->4)-alpha-L-R hap-(1-->3)-alpha-D-Galp-(1-->]- (structure I) and [-->2)-[alpha-Tyvp-(1-->3)]beta-D-Manp-(1-->4)-alpha--L-R hap-(1-->3)-[alpha-D-Glcp-(1-->4)]alpha-D-Galp-(1-->]- (structure II). The LMW LPSs from both isolates contains truncated O-antigen polysaccharide which is comprised of only structure I. In the virulent SE6-E21 isolate, the HMW LPS has a structure I/II ratio of 1:1, while in the avirulent SE6-E5 isolate, this ratio is 7:1. While the 7:1 ratio represents the published level of glucosylation for S. enteritidis LPS as well as for S. enteritidis LPS purchased from Sigma Chemical Co., the 1:1 ratio found for the virulent SE6-E21 is identical to the high level of glucosylation reported for S. typhi LPS. Thus, the LPS from the virulent SE6-E21 isolate produces an S. typhi-like LPS. Furthermore, the amount of O-antigen polysaccharide in SE6-E21 was twice that in SE6-E5.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown K. L., Hughes K. T. The role of anti-sigma factors in gene regulation. Mol Microbiol. 1995 May;16(3):397–404. doi: 10.1111/j.1365-2958.1995.tb02405.x. [DOI] [PubMed] [Google Scholar]
  2. Corzo J., Pérez-Galdona R., León-Barrios M., Gutiérrez-Navarro A. M. Alcian blue fixation allows silver staining of the isolated polysaccharide component of bacterial lipopolysaccharides in polyacrylamide gels. Electrophoresis. 1991 Jun;12(6):439–441. doi: 10.1002/elps.1150120611. [DOI] [PubMed] [Google Scholar]
  3. Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guard-Petter J., Lakshmi B., Carlson R., Ingram K. Characterization of lipopolysaccharide heterogeneity in Salmonella enteritidis by an improved gel electrophoresis method. Appl Environ Microbiol. 1995 Aug;61(8):2845–2851. doi: 10.1128/aem.61.8.2845-2851.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Helander I. M., Moran A. P., Mäkelä P. H. Separation of two lipopolysaccharide populations with different contents of O-antigen factor 122 in Salmonella enterica serovar typhimurium. Mol Microbiol. 1992 Oct;6(19):2857–2862. doi: 10.1111/j.1365-2958.1992.tb01465.x. [DOI] [PubMed] [Google Scholar]
  6. Hellerqvist C. G., Lindberg B., Svensson S., Holme T., Lindberg A. A. Structural studies on the O-specific side chains of the cell wall lipopolysaccharides from Salmonella typhi and S. enteritidis. Acta Chem Scand. 1969;23(5):1588–1596. doi: 10.3891/acta.chem.scand.23-1588. [DOI] [PubMed] [Google Scholar]
  7. Iwashita S., Kanegasaki S. Smooth specific phage adsorption: endorhamnosidase activity of tail parts of P22. Biochem Biophys Res Commun. 1973 Nov 16;55(2):403–409. doi: 10.1016/0006-291x(73)91101-7. [DOI] [PubMed] [Google Scholar]
  8. Jansson P. E., Lindberg A. A., Lindberg B., Wollin R. Structural studies on the hexose region of the core in lipopolysaccharides from Enterobacteriaceae. Eur J Biochem. 1981 Apr;115(3):571–577. doi: 10.1111/j.1432-1033.1981.tb06241.x. [DOI] [PubMed] [Google Scholar]
  9. Kauffmann F. A Typhoid Variant and a New Serological Variation in the Salmonella Group. J Bacteriol. 1941 Feb;41(2):127–140. doi: 10.1128/jb.41.2.127-140.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim J. S., Reuhs B. L., Rahman M. M., Ridley B., Carlson R. W. Separation of bacterial capsular and lipopolysaccharides by preparative electrophoresis. Glycobiology. 1996 Jun;6(4):433–437. doi: 10.1093/glycob/6.4.433. [DOI] [PubMed] [Google Scholar]
  11. Komuro T., Galanos C. Analysis of Salmonella lipopolysaccharides by sodium deoxycholate-polyacrylamide gel electrophoresis. J Chromatogr. 1988 Oct 26;450(3):381–387. doi: 10.1016/s0021-9673(01)83593-7. [DOI] [PubMed] [Google Scholar]
  12. McConville M. J., Homans S. W., Thomas-Oates J. E., Dell A., Bacic A. Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. J Biol Chem. 1990 May 5;265(13):7385–7394. [PubMed] [Google Scholar]
  13. Nikaido H., Nikaido K., Nakae T., Mäkelä P. H. Glucosylation of lipopolysaccharide in Salmonella: biosynthesis of O antigen factor 12 2 . I. Over-all reaction. J Biol Chem. 1971 Jun 25;246(12):3902–3911. [PubMed] [Google Scholar]
  14. Petter J. G. Detection of two smooth colony phenotypes in a Salmonella enteritidis isolate which vary in their ability to contaminate eggs. Appl Environ Microbiol. 1993 Sep;59(9):2884–2890. doi: 10.1128/aem.59.9.2884-2890.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Salmond G. P., Bycroft B. W., Stewart G. S., Williams P. The bacterial 'enigma': cracking the code of cell-cell communication. Mol Microbiol. 1995 May;16(4):615–624. doi: 10.1111/j.1365-2958.1995.tb02424.x. [DOI] [PubMed] [Google Scholar]
  16. St Louis M. E., Morse D. L., Potter M. E., DeMelfi T. M., Guzewich J. J., Tauxe R. V., Blake P. A. The emergence of grade A eggs as a major source of Salmonella enteritidis infections. New implications for the control of salmonellosis. JAMA. 1988 Apr 8;259(14):2103–2107. [PubMed] [Google Scholar]
  17. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  18. Ward L. R., de Sa J. D., Rowe B. A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect. 1987 Oct;99(2):291–294. doi: 10.1017/s0950268800067765. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES