Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(7):2189–2193. doi: 10.1128/jb.179.7.2189-2193.1997

Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr.

K A Klyachko 1, S Schuldiner 1, A A Neyfakh 1
PMCID: PMC178954  PMID: 9079903

Abstract

The Bacillus subtilis multidrug transporter Bmr, a member of the major facilitator superfamily of transporters, causes the efflux of a number of structurally unrelated toxic compounds from cells. We have shown previously that the activity of Bmr can be inhibited by the plant alkaloid reserpine. Here we demonstrate that various substitutions of residues Phe143 and Phe306 of Bmr not only reduce its sensitivity to reserpine inhibition but also significantly change its substrate specificity. Cross-resistance profiles of bacteria expressing mutant forms of the transporter differ from each other and from the cross-resistance profile of cells expressing wild-type Bmr. This result strongly suggests that Bmr interacts with its transported drugs directly, with residues Phe143 and Phe306 likely to be involved in substrate recognition.

Full Text

The Full Text of this article is available as a PDF (180.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed M., Borsch C. M., Neyfakh A. A., Schuldiner S. Mutants of the Bacillus subtilis multidrug transporter Bmr with altered sensitivity to the antihypertensive alkaloid reserpine. J Biol Chem. 1993 May 25;268(15):11086–11089. [PubMed] [Google Scholar]
  2. Ahmed M., Borsch C. M., Taylor S. S., Vázquez-Laslop N., Neyfakh A. A. A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates. J Biol Chem. 1994 Nov 11;269(45):28506–28513. [PubMed] [Google Scholar]
  3. Ahmed M., Lyass L., Markham P. N., Taylor S. S., Vázquez-Laslop N., Neyfakh A. A. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J Bacteriol. 1995 Jul;177(14):3904–3910. doi: 10.1128/jb.177.14.3904-3910.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choi K. H., Chen C. J., Kriegler M., Roninson I. B. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell. 1988 May 20;53(4):519–529. doi: 10.1016/0092-8674(88)90568-5. [DOI] [PubMed] [Google Scholar]
  5. Devine S. E., Melera P. W. Diversity of multidrug resistance in mammalian cells. J Biol Chem. 1994 Feb 25;269(8):6133–6139. [PubMed] [Google Scholar]
  6. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  7. Gros P., Dhir R., Croop J., Talbot F. A single amino acid substitution strongly modulates the activity and substrate specificity of the mouse mdr1 and mdr3 drug efflux pumps. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7289–7293. doi: 10.1073/pnas.88.16.7289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Le Grice S. F., Sonenshein A. L. Interaction of Bacillus subtilis RNA polymerase with a chromosomal promoter. J Mol Biol. 1982 Dec 15;162(3):551–564. doi: 10.1016/0022-2836(82)90388-6. [DOI] [PubMed] [Google Scholar]
  9. Lewis K. Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci. 1994 Mar;19(3):119–123. doi: 10.1016/0968-0004(94)90204-6. [DOI] [PubMed] [Google Scholar]
  10. Loo T. W., Clarke D. M. Functional consequences of phenylalanine mutations in the predicted transmembrane domain of P-glycoprotein. J Biol Chem. 1993 Sep 25;268(27):19965–19972. [PubMed] [Google Scholar]
  11. Neyfakh A. A., Bidnenko V. E., Chen L. B. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4781–4785. doi: 10.1073/pnas.88.11.4781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neyfakh A. A., Borsch C. M., Kaatz G. W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob Agents Chemother. 1993 Jan;37(1):128–129. doi: 10.1128/aac.37.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol. 1996 Oct;178(20):5853–5859. doi: 10.1128/jb.178.20.5853-5859.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
  15. Paulsen I. T., Brown M. H., Littlejohn T. G., Mitchell B. A., Skurray R. A. Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3630–3635. doi: 10.1073/pnas.93.8.3630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paulsen I. T., Brown M. H., Skurray R. A. Proton-dependent multidrug efflux systems. Microbiol Rev. 1996 Dec;60(4):575–608. doi: 10.1128/mr.60.4.575-608.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roepe P. D. The role of the MDR protein in altered drug translocation across tumor cell membranes. Biochim Biophys Acta. 1995 Dec 20;1241(3):385–405. doi: 10.1016/0304-4157(95)00013-5. [DOI] [PubMed] [Google Scholar]
  18. Timmers K., Sternglanz R. Ionization and divalent cation dissociation constants of nalidixic and oxolinic acids. Bioinorg Chem. 1978 Aug;9(2):145–155. doi: 10.1016/s0006-3061(00)80286-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES