Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(7):2221–2227. doi: 10.1128/jb.179.7.2221-2227.1997

Activation of the catBCA promoter: probing the interaction of CatR and RNA polymerase through in vitro transcription.

S A Chugani 1, M R Parsek 1, C D Hershberger 1, K Murakami 1, A Ishihama 1, A M Chakrabarty 1
PMCID: PMC178958  PMID: 9079907

Abstract

The soil bacterium Pseudomonas putida is capable of degrading many aromatic compounds, including benzoate, through catechol as an intermediate. The catabolism of catechol is mediated by the catBCA operon, whose induction requires the pathway intermediate cis,cis-muconate as an inducer and the regulatory protein, CatR. CatR also regulates the plasmid-borne pheBA operon of P. putida PaW85, which is involved in phenol catabolism. We have used an in vitro transcription system to study the roles of CatR, cis,cis-muconate, Escherichia coli RNA polymerase, and promoter sequences in expression of the cat and phe operons. The assay confirmed the requirement of both CatR and cis,cis-muconate for transcript formation. We also examined the in vitro transcription of three site-directed mutants of the catBCA promoter; the results obtained compared favorably with previous in vivo data. The requirement of the alpha subunit of RNA polymerase for expression of the catBCA and the pheBA transcripts was also examined. The C-terminal region of the alpha subunit of RNA polymerase has been implicated in direct protein-protein contact with transcriptional regulatory proteins and/or direct contact with the DNA. We show that the carboxyl terminus of the alpha subunit is required for the expression of the catBCA and the pheBA operons because RNA polymerases with truncated alpha subunits were deficient in activation. Further experiments demonstrated the arginine at position 265 and the asparagine at position 268 of the alpha subunit as possible amino acids involved in activation. On the basis of these and previous results, we propose a model to explain the interaction of the different regulatory components leading to CatR-dependent activation of the catBCA operon.

Full Text

The Full Text of this article is available as a PDF (674.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich T. L., Chakrabarty A. M. Transcriptional regulation, nucleotide sequence, and localization of the promoter of the catBC operon in Pseudomonas putida. J Bacteriol. 1988 Mar;170(3):1297–1304. doi: 10.1128/jb.170.3.1297-1304.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attey A., Belyaeva T., Savery N., Hoggett J., Fujita N., Ishihama A., Busby S. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter. Nucleic Acids Res. 1994 Oct 25;22(21):4375–4380. doi: 10.1093/nar/22.21.4375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blatter E. E., Ross W., Tang H., Gourse R. L., Ebright R. H. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell. 1994 Sep 9;78(5):889–896. doi: 10.1016/s0092-8674(94)90682-3. [DOI] [PubMed] [Google Scholar]
  4. Chang M., Crawford I. P. In vitro determination of the effect of indoleglycerol phosphate on the interaction of purified TrpI protein with its DNA-binding sites. J Bacteriol. 1991 Mar;173(5):1590–1597. doi: 10.1128/jb.173.5.1590-1597.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choy H. E., Park S. W., Aki T., Parrack P., Fujita N., Ishihama A., Adhya S. Repression and activation of transcription by Gal and Lac repressors: involvement of alpha subunit of RNA polymerase. EMBO J. 1995 Sep 15;14(18):4523–4529. doi: 10.1002/j.1460-2075.1995.tb00131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Erickson J. W., Gross C. A. Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev. 1989 Sep;3(9):1462–1471. doi: 10.1101/gad.3.9.1462. [DOI] [PubMed] [Google Scholar]
  7. Gao J. G., Gussin G. N. Activation of the trpBA promoter of Pseudomonas aeruginosa by TrpI protein in vitro. J Bacteriol. 1991 Jun;173(12):3763–3769. doi: 10.1128/jb.173.12.3763-3769.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gao J. G., Gussin G. N. RNA polymerases from Pseudomonas aeruginosa and Pseudomonas syringae respond to Escherichia coli activator proteins. J Bacteriol. 1991 Jan;173(1):394–397. doi: 10.1128/jb.173.1.394-397.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giladi H., Murakami K., Ishihama A., Oppenheim A. B. Identification of an UP element within the IHF binding site at the PL1-PL2 tandem promoter of bacteriophage lambda. J Mol Biol. 1996 Jul 26;260(4):484–491. doi: 10.1006/jmbi.1996.0416. [DOI] [PubMed] [Google Scholar]
  10. Goethals K., Van Montagu M., Holsters M. Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1646–1650. doi: 10.1073/pnas.89.5.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gussin G. N., Olson C., Igarashi K., Ishihama A. Activation defects caused by mutations in Escherichia coli rpoA are promoter specific. J Bacteriol. 1992 Aug;174(15):5156–5160. doi: 10.1128/jb.174.15.5156-5160.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henikoff S., Wallace J. C., Brown J. P. Finding protein similarities with nucleotide sequence databases. Methods Enzymol. 1990;183:111–132. doi: 10.1016/0076-6879(90)83009-x. [DOI] [PubMed] [Google Scholar]
  13. Hershberger C. D., Ye R. W., Parsek M. R., Xie Z. D., Chakrabarty A. M. The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigma E). Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7941–7945. doi: 10.1073/pnas.92.17.7941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houghton J. E., Brown T. M., Appel A. J., Hughes E. J., Ornston L. N. Discontinuities in the evolution of Pseudomonas putida cat genes. J Bacteriol. 1995 Jan;177(2):401–412. doi: 10.1128/jb.177.2.401-412.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hunt T. P., Magasanik B. Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8453–8457. doi: 10.1073/pnas.82.24.8453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Igarashi K., Ishihama A. Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell. 1991 Jun 14;65(6):1015–1022. doi: 10.1016/0092-8674(91)90553-b. [DOI] [PubMed] [Google Scholar]
  17. Ishihama A. Protein-protein communication within the transcription apparatus. J Bacteriol. 1993 May;175(9):2483–2489. doi: 10.1128/jb.175.9.2483-2489.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jafri S., Urbanowski M. L., Stauffer G. V. A mutation in the rpoA gene encoding the alpha subunit of RNA polymerase that affects metE-metR transcription in Escherichia coli. J Bacteriol. 1995 Feb;177(3):524–529. doi: 10.1128/jb.177.3.524-529.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jair K. W., Fawcett W. P., Fujita N., Ishihama A., Wolf R. E., Jr Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes. Mol Microbiol. 1996 Jan;19(2):307–317. doi: 10.1046/j.1365-2958.1996.368893.x. [DOI] [PubMed] [Google Scholar]
  20. Kasak L., Hôrak R., Nurk A., Talvik K., Kivisaar M. Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. J Bacteriol. 1993 Dec;175(24):8038–8042. doi: 10.1128/jb.175.24.8038-8042.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kivisaar M. A., Habicht J. K., Heinaru A. L. Degradation of phenol and m-toluate in Pseudomonas sp. strain EST1001 and its Pseudomonas putida transconjugants is determined by a multiplasmid system. J Bacteriol. 1989 Sep;171(9):5111–5116. doi: 10.1128/jb.171.9.5111-5116.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lawley B., Fujita N., Ishihama A., Pittard A. J. The TyrR protein of Escherichia coli is a class I transcription activator. J Bacteriol. 1995 Jan;177(1):238–241. doi: 10.1128/jb.177.1.238-241.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murakami K., Fujita N., Ishihama A. Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element. EMBO J. 1996 Aug 15;15(16):4358–4367. [PMC free article] [PubMed] [Google Scholar]
  24. Parsek M. R., Kivisaar M., Chakrabarty A. M. Differential DNA bending introduced by the Pseudomonas putida LysR-type regulator, CatR, at the plasmid-borne pheBA and chromosomal catBC promoters. Mol Microbiol. 1995 Mar;15(5):819–828. doi: 10.1111/j.1365-2958.1995.tb02352.x. [DOI] [PubMed] [Google Scholar]
  25. Parsek M. R., Shinabarger D. L., Rothmel R. K., Chakrabarty A. M. Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida. J Bacteriol. 1992 Dec;174(23):7798–7806. doi: 10.1128/jb.174.23.7798-7806.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parsek M. R., Ye R. W., Pun P., Chakrabarty A. M. Critical nucleotides in the interaction of a LysR-type regulator with its target promoter region. catBC promoter activation by CatR. J Biol Chem. 1994 Apr 15;269(15):11279–11284. [PubMed] [Google Scholar]
  27. Rothmel R. K., Shinabarger D. L., Parsek M. R., Aldrich T. L., Chakrabarty A. M. Functional analysis of the Pseudomonas putida regulatory protein CatR: transcriptional studies and determination of the CatR DNA-binding site by hydroxyl-radical footprinting. J Bacteriol. 1991 Aug;173(15):4717–4724. doi: 10.1128/jb.173.15.4717-4724.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Savery N. J., Rhodius V. A., Wing H. J., Busby S. J. Transcription activation at Escherichia coli promoters dependent on the cyclic AMP receptor protein: effects of binding sequences for the RNA polymerase alpha-subunit. Biochem J. 1995 Jul 1;309(Pt 1):77–83. doi: 10.1042/bj3090077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schell M. A. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626. doi: 10.1146/annurev.mi.47.100193.003121. [DOI] [PubMed] [Google Scholar]
  30. Storz G., Tartaglia L. A., Ames B. N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science. 1990 Apr 13;248(4952):189–194. doi: 10.1126/science.2183352. [DOI] [PubMed] [Google Scholar]
  31. Tao K., Fujita N., Ishihama A. Involvement of the RNA polymerase alpha subunit C-terminal region in co-operative interaction and transcriptional activation with OxyR protein. Mol Microbiol. 1993 Mar;7(6):859–864. doi: 10.1111/j.1365-2958.1993.tb01176.x. [DOI] [PubMed] [Google Scholar]
  32. Tao K., Zou C., Fujita N., Ishihama A. Mapping of the OxyR protein contact site in the C-terminal region of RNA polymerase alpha subunit. J Bacteriol. 1995 Dec;177(23):6740–6744. doi: 10.1128/jb.177.23.6740-6744.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tartaglia L. A., Storz G., Ames B. N. Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J Mol Biol. 1989 Dec 20;210(4):709–719. doi: 10.1016/0022-2836(89)90104-6. [DOI] [PubMed] [Google Scholar]
  34. Wang L., Helmann J. D., Winans S. C. The A. tumefaciens transcriptional activator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Cell. 1992 May 15;69(4):659–667. doi: 10.1016/0092-8674(92)90229-6. [DOI] [PubMed] [Google Scholar]
  35. Wheelis M. L., Ornston L. N. Genetic control of enzyme induction in the -ketoadipate pathway of Pseudomonas putida: deletion mapping of cat mutations. J Bacteriol. 1972 Feb;109(2):790–795. doi: 10.1128/jb.109.2.790-795.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  37. Zhou Y., Pendergrast P. S., Bell A., Williams R., Busby S., Ebright R. H. The functional subunit of a dimeric transcription activator protein depends on promoter architecture. EMBO J. 1994 Oct 3;13(19):4549–4557. doi: 10.1002/j.1460-2075.1994.tb06776.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES