Abstract
The products of cooCTJ are involved in normal in vivo Ni insertion into the carbon monoxide dehydrogenase (CODH) of Rhodospirillum rubrum. Located on a 1.5-kb DNA segment immediately downstream of the CODH structural gene (cooS), two of the genes encode proteins that bear motifs reminiscent of other (urease and hydrogenase) Ni-insertion systems: a nucleoside triphosphate-binding motif near the N terminus of CooC and a run of 15 histidine residues regularly spaced over the last 30 amino acids of the C terminus of CooJ. A Gm(r)omega-linker cassette was developed to create both polar and nonpolar (60 bp) insertions in the cooCTJ region, and these, along with several deletions, were introduced into R. rubrum by homologous recombination. Analysis of the exogenous Ni levels required to sustain CO-dependent growth of the R. rubrum mutants demonstrated different phenotypes: whereas the wild-type strain and a mutant bearing a partial cooJ deletion (of the region encoding the histidine-rich segment) grew at 0.5 microM Ni supplementation, strains bearing Gm(r)omega-linker cassettes in cooT and cooJ required approximately 50-fold-higher Ni levels and all cooC insertion strains, bearing polar or nonpolar insertions, grew optimally at 550 microM Ni.
Full Text
The Full Text of this article is available as a PDF (311.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. M., Homer M. J., Chatterjee R., Ludden P. W., Roberts G. P., Shah V. K. Dinitrogenase reductase- and MgATP-dependent maturation of apodinitrogenase from Azotobacter vinelandii. J Biol Chem. 1993 Nov 5;268(31):23670–23674. [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Bonam D., Lehman L., Roberts G. P., Ludden P. W. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity. J Bacteriol. 1989 Jun;171(6):3102–3107. doi: 10.1128/jb.171.6.3102-3107.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonam D., Ludden P. W. Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum. J Biol Chem. 1987 Mar 5;262(7):2980–2987. [PubMed] [Google Scholar]
- Bonam D., McKenna M. C., Stephens P. J., Ludden P. W. Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: in vivo and in vitro activation by exogenous nickel. Proc Natl Acad Sci U S A. 1988 Jan;85(1):31–35. doi: 10.1073/pnas.85.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brayman T. G., Hausinger R. P. Purification, characterization, and functional analysis of a truncated Klebsiella aerogenes UreE urease accessory protein lacking the histidine-rich carboxyl terminus. J Bacteriol. 1996 Sep;178(18):5410–5416. doi: 10.1128/jb.178.18.5410-5416.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
- Chen J. C., Mortenson L. E., Seefeldt L. C. Analysis of a gene region required for dihydrogen oxidation in Azotobacter vinelandii. Curr Microbiol. 1995 Jun;30(6):351–355. doi: 10.1007/BF00369862. [DOI] [PubMed] [Google Scholar]
- Cussac V., Ferrero R. L., Labigne A. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J Bacteriol. 1992 Apr;174(8):2466–2473. doi: 10.1128/jb.174.8.2466-2473.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dernedde J., Eitinger T., Patenge N., Friedrich B. hyp gene products in Alcaligenes eutrophus are part of a hydrogenase-maturation system. Eur J Biochem. 1996 Jan 15;235(1-2):351–358. doi: 10.1111/j.1432-1033.1996.00351.x. [DOI] [PubMed] [Google Scholar]
- Ensign S. A., Campbell M. J., Ludden P. W. Activation of the nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: kinetic characterization and reductant requirement. Biochemistry. 1990 Feb 27;29(8):2162–2168. doi: 10.1021/bi00460a029. [DOI] [PubMed] [Google Scholar]
- Ensign S. A., Ludden P. W. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J Biol Chem. 1991 Sep 25;266(27):18395–18403. [PubMed] [Google Scholar]
- Ferry J. G. CO dehydrogenase. Annu Rev Microbiol. 1995;49:305–333. doi: 10.1146/annurev.mi.49.100195.001513. [DOI] [PubMed] [Google Scholar]
- Fox J. D., He Y., Shelver D., Roberts G. P., Ludden P. W. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol. 1996 Nov;178(21):6200–6208. doi: 10.1128/jb.178.21.6200-6208.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox J. D., Kerby R. L., Roberts G. P., Ludden P. W. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol. 1996 Mar;178(6):1515–1524. doi: 10.1128/jb.178.6.1515-1524.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu C., Olson J. W., Maier R. J. HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2333–2337. doi: 10.1073/pnas.92.6.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert J. V., Ramakrishna J., Sunderman F. W., Jr, Wright A., Plaut A. G. Protein Hpn: cloning and characterization of a histidine-rich metal-binding polypeptide in Helicobacter pylori and Helicobacter mustelae. Infect Immun. 1995 Jul;63(7):2682–2688. doi: 10.1128/iai.63.7.2682-2688.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goff S. P., Prasad V. R. Linker insertion mutagenesis as probe of structure-function relationships. Methods Enzymol. 1991;208:586–603. doi: 10.1016/0076-6879(91)08030-l. [DOI] [PubMed] [Google Scholar]
- Grunwald S. K., Lies D. P., Roberts G. P., Ludden P. W. Posttranslational regulation of nitrogenase in Rhodospirillum rubrum strains overexpressing the regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase activating glycohydrolase. J Bacteriol. 1995 Feb;177(3):628–635. doi: 10.1128/jb.177.3.628-635.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He Y., Shelver D., Kerby R. L., Roberts G. P. Characterization of a CO-responsive transcriptional activator from Rhodospirillum rubrum. J Biol Chem. 1996 Jan 5;271(1):120–123. doi: 10.1074/jbc.271.1.120. [DOI] [PubMed] [Google Scholar]
- Island M. D., Mobley H. L. Proteus mirabilis urease: operon fusion and linker insertion analysis of ure gene organization, regulation, and function. J Bacteriol. 1995 Oct;177(19):5653–5660. doi: 10.1128/jb.177.19.5653-5660.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobi A., Rossmann R., Böck A. The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol. 1992;158(6):444–451. doi: 10.1007/BF00276307. [DOI] [PubMed] [Google Scholar]
- Kerby R. L., Hong S. S., Ensign S. A., Coppoc L. J., Ludden P. W., Roberts G. P. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol. 1992 Aug;174(16):5284–5294. doi: 10.1128/jb.174.16.5284-5294.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerby R. L., Ludden P. W., Roberts G. P. Carbon monoxide-dependent growth of Rhodospirillum rubrum. J Bacteriol. 1995 Apr;177(8):2241–2244. doi: 10.1128/jb.177.8.2241-2244.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolodziej P. A., Young R. A. Epitope tagging and protein surveillance. Methods Enzymol. 1991;194:508–519. doi: 10.1016/0076-6879(91)94038-e. [DOI] [PubMed] [Google Scholar]
- Kumar M., Qiu D., Spiro T. G., Ragsdale S. W. A methylnickel intermediate in a bimetallic mechanism of acetyl-coenzyme A synthesis by anaerobic bacteria. Science. 1995 Oct 27;270(5236):628–630. doi: 10.1126/science.270.5236.628. [DOI] [PubMed] [Google Scholar]
- Lee M. H., Mulrooney S. B., Renner M. J., Markowicz Y., Hausinger R. P. Klebsiella aerogenes urease gene cluster: sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J Bacteriol. 1992 Jul;174(13):4324–4330. doi: 10.1128/jb.174.13.4324-4330.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. H., Pankratz H. S., Wang S., Scott R. A., Finnegan M. G., Johnson M. K., Ippolito J. A., Christianson D. W., Hausinger R. P. Purification and characterization of Klebsiella aerogenes UreE protein: a nickel-binding protein that functions in urease metallocenter assembly. Protein Sci. 1993 Jun;2(6):1042–1052. doi: 10.1002/pro.5560020617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeda M., Hidaka M., Nakamura A., Masaki H., Uozumi T. Cloning, sequencing, and expression of thermophilic Bacillus sp. strain TB-90 urease gene complex in Escherichia coli. J Bacteriol. 1994 Jan;176(2):432–442. doi: 10.1128/jb.176.2.432-442.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maier T., Lottspeich F., Böck A. GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur J Biochem. 1995 May 15;230(1):133–138. [PubMed] [Google Scholar]
- Maupin-Furlow J. A., Ferry J. G. Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila. J Bacteriol. 1996 Dec;178(23):6849–6856. doi: 10.1128/jb.178.23.6849-6856.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mobley H. L., Garner R. M., Bauerfeind P. Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol. 1995 Apr;16(1):97–109. doi: 10.1111/j.1365-2958.1995.tb02395.x. [DOI] [PubMed] [Google Scholar]
- Mobley H. L., Island M. D., Hausinger R. P. Molecular biology of microbial ureases. Microbiol Rev. 1995 Sep;59(3):451–480. doi: 10.1128/mr.59.3.451-480.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navarro C., Wu L. F., Mandrand-Berthelot M. A. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol. 1993 Sep;9(6):1181–1191. doi: 10.1111/j.1365-2958.1993.tb01247.x. [DOI] [PubMed] [Google Scholar]
- Oliphant A. R., Struhl K. The use of random-sequence oligonucleotides for determining consensus sequences. Methods Enzymol. 1987;155:568–582. doi: 10.1016/0076-6879(87)55037-6. [DOI] [PubMed] [Google Scholar]
- Parker R. C., Watson R. M., Vinograd J. Mapping of closed circular DNAs by cleavage with restriction endonucleases and calibration by agarose gel electrophoresis. Proc Natl Acad Sci U S A. 1977 Mar;74(3):851–855. doi: 10.1073/pnas.74.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters J. W., Fisher K., Dean D. R. Nitrogenase structure and function: a biochemical-genetic perspective. Annu Rev Microbiol. 1995;49:335–366. doi: 10.1146/annurev.mi.49.100195.002003. [DOI] [PubMed] [Google Scholar]
- Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
- Rey L., Imperial J., Palacios J. M., Ruiz-Argüeso T. Purification of Rhizobium leguminosarum HypB, a nickel-binding protein required for hydrogenase synthesis. J Bacteriol. 1994 Oct;176(19):6066–6073. doi: 10.1128/jb.176.19.6066-6073.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schweizer H. D. Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques. 1993 Nov;15(5):831–834. [PubMed] [Google Scholar]
- Shelver D., Kerby R. L., He Y., Roberts G. P. Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol. 1995 Apr;177(8):2157–2163. doi: 10.1128/jb.177.8.2157-2163.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sriwanthana B., Island M. D., Maneval D., Mobley H. L. Single-step purification of Proteus mirabilis urease accessory protein UreE, a protein with a naturally occurring histidine tail, by nickel chelate affinity chromatography. J Bacteriol. 1994 Nov;176(22):6836–6841. doi: 10.1128/jb.176.22.6836-6841.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stultz C. M., White J. V., Smith T. F. Structural analysis based on state-space modeling. Protein Sci. 1993 Mar;2(3):305–314. doi: 10.1002/pro.5560020302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thauer R. K., Bonacker L. G. Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Found Symp. 1994;180:210–227. doi: 10.1002/9780470514535.ch12. [DOI] [PubMed] [Google Scholar]
- Waugh R., Boxer D. H. Pleiotropic hydrogenase mutants of Escherichia coli K12: growth in the presence of nickel can restore hydrogenase activity. Biochimie. 1986 Jan;68(1):157–166. doi: 10.1016/s0300-9084(86)81080-x. [DOI] [PubMed] [Google Scholar]
- White J. V., Stultz C. M., Smith T. F. Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math Biosci. 1994 Jan;119(1):35–75. doi: 10.1016/0025-5564(94)90004-3. [DOI] [PubMed] [Google Scholar]
- Xu H. W., Wall J. D. Clustering of genes necessary for hydrogen oxidation in Rhodobacter capsulatus. J Bacteriol. 1991 Apr;173(7):2401–2405. doi: 10.1128/jb.173.7.2401-2405.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]