Abstract
Members of the genus Buchnera are intracellular symbionts harbored by the aphid bacteriocyte which selectively synthesize symbionin, a homolog of the Escherichia coli GroEL protein, in vivo. Symbionin and SymS, a GroES homolog, are encoded in the symSL operon. Northern blotting and primer extension analyses revealed that the symSL operon invariably gives rise to a bicistronic mRNA under the control of a heat shock promoter, though the amount of the symSL mRNA in the isolated symbiont did not increase in response to heat shock. The sigma32 protein that recognizes the heat shock promoter in E. coli was scarcely detected in Buchnera cells even after heat shock. Although the functionally essential regions of the Buchnera sigma32 protein were well conserved, the Buchnera rpoH gene did not complement an E. coli delta rpoH mutant. On the one hand, the A-T evolutionary pressure imposed on the Buchnera genome may have not only decreased the activity of its sigma32 but also ruined the nucleotide sequences necessary for the expression of rpoH; on the other hand, it may have facilitated expression of the symSL operon without activation by sigma32.
Full Text
The Full Text of this article is available as a PDF (372.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahn T. I., Lim S. T., Leeu H. K., Lee J. E., Jeon K. W. A novel strong promoter of the groEx operon of symbiotic bacteria in Amoeba proteus. Gene. 1994 Oct 11;148(1):43–49. doi: 10.1016/0378-1119(94)90231-3. [DOI] [PubMed] [Google Scholar]
- Benvenisti L., Koby S., Rutman A., Giladi H., Yura T., Oppenheim A. B. Cloning and primary sequence of the rpoH gene from Pseudomonas aeruginosa. Gene. 1995 Mar 21;155(1):73–76. doi: 10.1016/0378-1119(94)00829-h. [DOI] [PubMed] [Google Scholar]
- Cowing D. W., Bardwell J. C., Craig E. A., Woolford C., Hendrix R. W., Gross C. A. Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci U S A. 1985 May;82(9):2679–2683. doi: 10.1073/pnas.82.9.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson J. W., Gross C. A. Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev. 1989 Sep;3(9):1462–1471. doi: 10.1101/gad.3.9.1462. [DOI] [PubMed] [Google Scholar]
- Fayet O., Ziegelhoffer T., Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol. 1989 Mar;171(3):1379–1385. doi: 10.1128/jb.171.3.1379-1385.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamer J., Multhaup G., Tomoyasu T., McCarty J. S., Rüdiger S., Schönfeld H. J., Schirra C., Bujard H., Bukau B. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J. 1996 Feb 1;15(3):607–617. [PMC free article] [PubMed] [Google Scholar]
- Garvin L. D., Hardies S. C. Nucleotide sequence for the htpR gene from Citrobacter freundii. Nucleic Acids Res. 1989 Jun 26;17(12):4889–4889. doi: 10.1093/nar/17.12.4889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grossman A. D., Erickson J. W., Gross C. A. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell. 1984 Sep;38(2):383–390. doi: 10.1016/0092-8674(84)90493-8. [DOI] [PubMed] [Google Scholar]
- Ishikawa H. Biochemical and molecular aspects of endosymbiosis in insects. Int Rev Cytol. 1989;116:1–45. doi: 10.1016/s0074-7696(08)60637-3. [DOI] [PubMed] [Google Scholar]
- Kusukawa N., Yura T. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev. 1988 Jul;2(7):874–882. doi: 10.1101/gad.2.7.874. [DOI] [PubMed] [Google Scholar]
- Lonetto M., Gribskov M., Gross C. A. The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol. 1992 Jun;174(12):3843–3849. doi: 10.1128/jb.174.12.3843-3849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morioka M., Ishikawa H. Mutualism based on stress: selective synthesis and phosphorylation of a stress protein by an intracellular symbiont. J Biochem. 1992 Apr;111(4):431–435. doi: 10.1093/oxfordjournals.jbchem.a123774. [DOI] [PubMed] [Google Scholar]
- Morioka M., Muraoka H., Yamamoto K., Ishikawa H. An endosymbiont chaperonin is a novel type of histidine protein kinase. J Biochem. 1994 Nov;116(5):1075–1081. doi: 10.1093/oxfordjournals.jbchem.a124630. [DOI] [PubMed] [Google Scholar]
- Nagai H., Yuzawa H., Yura T. Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10515–10519. doi: 10.1073/pnas.88.23.10515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakahigashi K., Yanagi H., Yura T. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res. 1995 Nov 11;23(21):4383–4390. [PMC free article] [PubMed] [Google Scholar]
- Ohtaka C., Ishikawa H. Accumulation of adenine and thymine in a groE-homologous operon of an intracellular symbiont. J Mol Evol. 1993 Feb;36(2):121–126. doi: 10.1007/BF00166247. [DOI] [PubMed] [Google Scholar]
- Ohtaka C., Nakamura H., Ishikawa H. Structures of chaperonins from an intracellular symbiont and their functional expression in Escherichia coli groE mutants. J Bacteriol. 1992 Mar;174(6):1869–1874. doi: 10.1128/jb.174.6.1869-1874.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pethö A., Belter J., Boros I., Venetianer P. The role of upstream sequences in determining the strength of an rRNA promoter of E. coli. Biochim Biophys Acta. 1986 Feb 24;866(1):37–43. doi: 10.1016/0167-4781(86)90098-9. [DOI] [PubMed] [Google Scholar]
- Straus D., Walter W., Gross C. A. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev. 1990 Dec;4(12A):2202–2209. doi: 10.1101/gad.4.12a.2202. [DOI] [PubMed] [Google Scholar]
- Unterman B. M., Baumann P., McLean D. L. Pea aphid symbiont relationships established by analysis of 16S rRNAs. J Bacteriol. 1989 Jun;171(6):2970–2974. doi: 10.1128/jb.171.6.2970-2974.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Q. P., Kaguni J. M. A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli. J Bacteriol. 1989 Aug;171(8):4248–4253. doi: 10.1128/jb.171.8.4248-4253.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. [DOI] [PubMed] [Google Scholar]
- Yura T., Tobe T., Ito K., Osawa T. Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6803–6807. doi: 10.1073/pnas.81.21.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuzawa H., Nagai H., Mori H., Yura T. Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res. 1993 Nov 25;21(23):5449–5455. doi: 10.1093/nar/21.23.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Y. N., Kusukawa N., Erickson J. W., Gross C. A., Yura T. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. J Bacteriol. 1988 Aug;170(8):3640–3649. doi: 10.1128/jb.170.8.3640-3649.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]