Abstract
Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several minor proteins increased with their time of incubation in the presence of Mg-ATP and the protein phosphatase inhibitors sodium orthovanadate and sodium fluoride. Incubation of the same extracts with [gamma-32P]ATP but not [alpha-32P]ATP led to the phosphorylation of five polypeptides with molecular masses of 20, 27, 52, 85, and 100 kDa. Human placental protein tyrosine phosphatase 1B, with absolute specificity for P-Tyr, liberated significant quantities of 32Pi from four of the polypeptides, confirming that a portion of the protein-bound phosphate was present as 32P-Tyr. Alkaline phosphatase and the dual-specificity protein phosphatase IphP from the cyanobacterium Nostoc commune UTEX 584 also dephosphorylated these proteins and did so with greater apparent efficiency. Two of the polypeptides were partially purified, and phosphoamino analysis identified 32P-Tyr, [32P]phosphoserine, and [32P]phosphothreonine. Anabaena sp. strain PCC 7120 cell extracts contained a protein tyrosine phosphatase activity that was abolished in the presence of sodium orthovanadate and inhibited significantly by the sulfhydryl-modifying agents p-hydroxymercuriphenylsulfonic acid and p-hydroxymercuribenzoate as well as by heparin. In Anabaena sp. strain PCC 7120 the presence and/or phosphorylation status of P-Tyr proteins was influenced by incident photon flux density.
Full Text
The Full Text of this article is available as a PDF (763.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carmichael W. W. The toxins of cyanobacteria. Sci Am. 1994 Jan;270(1):78–86. doi: 10.1038/scientificamerican0194-78. [DOI] [PubMed] [Google Scholar]
- Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
- Frasch S. C., Dworkin M. Tyrosine phosphorylation in Myxococcus xanthus, a multicellular prokaryote. J Bacteriol. 1996 Jul;178(14):4084–4088. doi: 10.1128/jb.178.14.4084-4088.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freestone P., Grant S., Toth I., Norris V. Identification of phosphoproteins in Escherichia coli. Mol Microbiol. 1995 Feb;15(3):573–580. doi: 10.1111/j.1365-2958.1995.tb02270.x. [DOI] [PubMed] [Google Scholar]
- Haselkorn R. Developmentally regulated gene rearrangements in prokaryotes. Annu Rev Genet. 1992;26:113–130. doi: 10.1146/annurev.ge.26.120192.000553. [DOI] [PubMed] [Google Scholar]
- Hildebrandt E., Fried V. A. Phosphoamino acid analysis of protein immobilized on polyvinylidene difluoride membrane. Anal Biochem. 1989 Mar;177(2):407–412. doi: 10.1016/0003-2697(89)90075-4. [DOI] [PubMed] [Google Scholar]
- Howell L. D., Griffiths C., Slade L. W., Potts M., Kennelly P. J. Substrate specificity of IphP, a cyanobacterial dual-specificity protein phosphatase with MAP kinase phosphatase activity. Biochemistry. 1996 Jun 11;35(23):7566–7572. doi: 10.1021/bi9600409. [DOI] [PubMed] [Google Scholar]
- Jia Z., Barford D., Flint A. J., Tonks N. K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science. 1995 Jun 23;268(5218):1754–1758. doi: 10.1126/science.7540771. [DOI] [PubMed] [Google Scholar]
- Johnson C. H., Golden S. S., Ishiura M., Kondo T. Circadian clocks in prokaryotes. Mol Microbiol. 1996 Jul;21(1):5–11. doi: 10.1046/j.1365-2958.1996.00613.x. [DOI] [PubMed] [Google Scholar]
- Kaniga K., Uralil J., Bliska J. B., Galán J. E. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol Microbiol. 1996 Aug;21(3):633–641. doi: 10.1111/j.1365-2958.1996.tb02571.x. [DOI] [PubMed] [Google Scholar]
- Kennelly P. J., Potts M. Fancy meeting you here! A fresh look at "prokaryotic" protein phosphorylation. J Bacteriol. 1996 Aug;178(16):4759–4764. doi: 10.1128/jb.178.16.4759-4764.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann N. H. Protein phosphorylation in cyanobacteria. Microbiology. 1994 Dec;140(Pt 12):3207–3215. doi: 10.1099/13500872-140-12-3207. [DOI] [PubMed] [Google Scholar]
- Ostrovsky P. C., Maloy S. Protein phosphorylation on serine, threonine, and tyrosine residues modulates membrane-protein interactions and transcriptional regulation in Salmonella typhimurium. Genes Dev. 1995 Aug 15;9(16):2034–2041. doi: 10.1101/gad.9.16.2034. [DOI] [PubMed] [Google Scholar]
- Pot D. A., Dixon J. E. Active site labeling of a receptor-like protein tyrosine phosphatase. J Biol Chem. 1992 Jan 5;267(1):140–143. [PubMed] [Google Scholar]
- Potts M., Sun H., Mockaitis K., Kennelly P. J., Reed D., Tonks N. K. A protein-tyrosine/serine phosphatase encoded by the genome of the cyanobacterium Nostoc commune UTEX 584. J Biol Chem. 1993 Apr 15;268(11):7632–7635. [PubMed] [Google Scholar]
- Rodríguez R., García-González M., Guerrero M. G., Lara C. Ammonium-sensitive protein kinase activity in plasma membranes of the cyanobacterium Anacystis nidulans. FEBS Lett. 1994 Aug 15;350(1):19–23. doi: 10.1016/0014-5793(94)00720-9. [DOI] [PubMed] [Google Scholar]
- Saier M. H., Jr Introduction: protein phosphorylation and signal transduction in bacteria. J Cell Biochem. 1993 Jan;51(1):1–6. doi: 10.1002/jcb.240510102. [DOI] [PubMed] [Google Scholar]
- Thomas S. R., Trust T. J. Tyrosine phosphorylation of the tetragonal paracrystalline array of Aeromonas hydrophila: molecular cloning and high-level expression of the S-layer protein gene. J Mol Biol. 1995 Feb 3;245(5):568–581. doi: 10.1006/jmbi.1994.0047. [DOI] [PubMed] [Google Scholar]
- Tonks N. K., Diltz C. D., Fischer E. H. Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem. 1988 May 15;263(14):6731–6737. [PubMed] [Google Scholar]
- Tonks N. K., Yang Q., Flint A. J., Gebbink M. F., Franza B. R., Jr, Hill D. E., Sun H., Brady-Kalnay S. Protein tyrosine phosphatases: the problems of a growing family. Cold Spring Harb Symp Quant Biol. 1992;57:87–94. doi: 10.1101/sqb.1992.057.01.012. [DOI] [PubMed] [Google Scholar]
- Vogel W., Lammers R., Huang J., Ullrich A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science. 1993 Mar 12;259(5101):1611–1614. doi: 10.1126/science.7681217. [DOI] [PubMed] [Google Scholar]
- Walton K. M., Dixon J. E. Protein tyrosine phosphatases. Annu Rev Biochem. 1993;62:101–120. doi: 10.1146/annurev.bi.62.070193.000533. [DOI] [PubMed] [Google Scholar]
- Warner K. M., Bullerjahn G. S. Light-Dependent Tyrosine Phosphorylation in the Cyanobacterium Prochlorothrix hollandica. Plant Physiol. 1994 Jun;105(2):629–633. doi: 10.1104/pp.105.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolk C. P. Genetic analysis of cyanobacterial development. Curr Opin Genet Dev. 1991 Oct;1(3):336–341. doi: 10.1016/s0959-437x(05)80297-7. [DOI] [PubMed] [Google Scholar]
- Zhang C. C. A gene encoding a protein related to eukaryotic protein kinases from the filamentous heterocystous cyanobacterium Anabaena PCC 7120. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11840–11844. doi: 10.1073/pnas.90.24.11840. [DOI] [PMC free article] [PubMed] [Google Scholar]