Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(7):2331–2338. doi: 10.1128/jb.179.7.2331-2338.1997

Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid.

G A Köhler 1, T C White 1, N Agabian 1
PMCID: PMC178971  PMID: 9079920

Abstract

An IMP dehydrogenase gene was isolated from Candida albicans on a approximately 2.9-kb XbaI genomic DNA fragment. The putative Candida IMP dehydrogenase gene (IMH3) encodes a protein of 521 amino acids with extensive sequence similarity to the IMP dehydrogenases of Saccharomyces cerevisiae and various other organisms. Like the S. cerevisiae IMH3 sequence characterized in the genome sequencing project, the open reading frame of the C. albicans IMH3 gene is interrupted by a small intron (248 bp) with typical exon-intron boundaries and a consensus S. cerevisiae branchpoint sequence. IMP dehydrogenase mRNAs are detected in both the yeast and hyphal forms of C. albicans as judged by Northern hybridization. Growth of wild-type (sensitive) C. albicans cells is inhibited at 1 microg of mycophenolic acid (MPA), a specific inhibitor of IMP dehydrogenases, per ml, whereas transformants hosting a plasmid with the IMH3 gene are resistant to MPA levels of up to at least 40 microg/ml. The resistance of cells to MPA is gene dosage dependent and suggests that IMH3 can be used as a dominant selection marker in C. albicans.

Full Text

The Full Text of this article is available as a PDF (784.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Ashbaugh C. D., Wessels M. R. Cloning, sequence analysis and expression of the group A streptococcal guaB gene encoding inosine monophosphate dehydrogenase. Gene. 1995 Nov 7;165(1):57–60. doi: 10.1016/0378-1119(95)00422-3. [DOI] [PubMed] [Google Scholar]
  3. Basrai M. A., Lubkowitz M. A., Perry J. R., Miller D., Krainer E., Naider F., Becker J. M. Cloning of a Candida albicans peptide transport gene. Microbiology. 1995 May;141(Pt 5):1147–1156. doi: 10.1099/13500872-141-5-1147. [DOI] [PubMed] [Google Scholar]
  4. Beck J. T., Zhao S., Wang C. C. Cloning, sequencing, and structural analysis of the DNA encoding inosine monophosphate dehydrogenase (EC 1.1.1.205) from Tritrichomonas foetus. Exp Parasitol. 1994 Feb;78(1):101–112. doi: 10.1006/expr.1994.1010. [DOI] [PubMed] [Google Scholar]
  5. Cannon R. D., Jenkinson H. F., Shepherd M. G. Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C. albicans and in Saccharomyces cerevisiae. Mol Gen Genet. 1992 Nov;235(2-3):453–457. doi: 10.1007/BF00279393. [DOI] [PubMed] [Google Scholar]
  6. Clutterbuck P. W., Oxford A. E., Raistrick H., Smith G. Studies in the biochemistry of micro-organisms: The metabolic products of the Penicillium brevi-compactum series. Biochem J. 1932;26(5):1441–1458. doi: 10.1042/bj0261441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collart F. R., Huberman E. Amplification of the IMP dehydrogenase gene in Chinese hamster cells resistant to mycophenolic acid. Mol Cell Biol. 1987 Sep;7(9):3328–3331. doi: 10.1128/mcb.7.9.3328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collart F. R., Huberman E. Cloning and sequence analysis of the human and Chinese hamster inosine-5'-monophosphate dehydrogenase cDNAs. J Biol Chem. 1988 Oct 25;263(30):15769–15772. [PubMed] [Google Scholar]
  9. Dobson M. J., Tuite M. F., Roberts N. A., Kingsman A. J., Kingsman S. M., Perkins R. E., Conroy S. C., Fothergill L. A. Conservation of high efficiency promoter sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 1982 Apr 24;10(8):2625–2637. doi: 10.1093/nar/10.8.2625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  11. Fonzi W. A., Irwin M. Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993 Jul;134(3):717–728. doi: 10.1093/genetics/134.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glesne D. A., Collart F. R., Huberman E. Regulation of IMP dehydrogenase gene expression by its end products, guanine nucleotides. Mol Cell Biol. 1991 Nov;11(11):5417–5425. doi: 10.1128/mcb.11.11.5417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goshorn A. K., Scherer S. Genetic analysis of prototrophic natural variants of Candida albicans. Genetics. 1989 Dec;123(4):667–673. doi: 10.1093/genetics/123.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guo Z., Sherman F. 3'-end-forming signals of yeast mRNA. Mol Cell Biol. 1995 Nov;15(11):5983–5990. doi: 10.1128/mcb.15.11.5983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hedstrom L., Wang C. C. Mycophenolic acid and thiazole adenine dinucleotide inhibition of Tritrichomonas foetus inosine 5'-monophosphate dehydrogenase: implications on enzyme mechanism. Biochemistry. 1990 Jan 30;29(4):849–854. doi: 10.1021/bi00456a001. [DOI] [PubMed] [Google Scholar]
  16. Hupe D. J., Azzolina B. A., Behrens N. D. IMP dehydrogenase from the intracellular parasitic protozoan Eimeria tenella and its inhibition by mycophenolic acid. J Biol Chem. 1986 Jun 25;261(18):8363–8369. [PubMed] [Google Scholar]
  17. Jackson R. C., Weber G., Morris H. P. IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature. 1975 Jul 24;256(5515):331–333. doi: 10.1038/256331a0. [DOI] [PubMed] [Google Scholar]
  18. Kagawa D., Nakamura T., Ueda T., Ando S., Tsutani H., Uchida M., Domae N., Sasada M., Uchino H. Reverse effect of guanine on the inhibitory action of mycophenolic acid during nucleic acid synthesis. Anticancer Res. 1986 Jul-Aug;6(4):643–648. [PubMed] [Google Scholar]
  19. Kalogeropoulos A. Automatic intron detection in nuclear DNA sequences of Saccharomyces cerevisiae. Yeast. 1995 May;11(6):555–565. doi: 10.1002/yea.320110605. [DOI] [PubMed] [Google Scholar]
  20. Kanzaki N., Miyagawa K. Nucleotide sequence of the Bacillus subtilis IMP dehydrogenase gene. Nucleic Acids Res. 1990 Nov 25;18(22):6710–6710. doi: 10.1093/nar/18.22.6710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kurtz M. B., Cortelyou M. W., Miller S. M., Lai M., Kirsch D. R. Development of autonomously replicating plasmids for Candida albicans. Mol Cell Biol. 1987 Jan;7(1):209–217. doi: 10.1128/mcb.7.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee K. L., Buckley H. R., Campbell C. C. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans. Sabouraudia. 1975 Jul;13(2):148–153. doi: 10.1080/00362177585190271. [DOI] [PubMed] [Google Scholar]
  23. Losberger C., Ernst J. F. Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res. 1989 Nov 25;17(22):9488–9488. doi: 10.1093/nar/17.22.9488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maicas E., Friesen J. D. A sequence pattern that occurs at the transcription initiation region of yeast RNA polymerase II promoters. Nucleic Acids Res. 1990 Jun 11;18(11):3387–3393. doi: 10.1093/nar/18.11.3387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Margolis N., Hogan D., Tilly K., Rosa P. A. Plasmid location of Borrelia purine biosynthesis gene homologs. J Bacteriol. 1994 Nov;176(21):6427–6432. doi: 10.1128/jb.176.21.6427-6432.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mason A. B., Buckley H. R., Gorman J. A. Molecular cloning and characterization of the Candida albicans enolase gene. J Bacteriol. 1993 May;175(9):2632–2639. doi: 10.1128/jb.175.9.2632-2639.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McNeil J. B. Functional characterization of a pyrimidine-rich element in the 5'-noncoding region of the yeast iso-1-cytochrome c gene. Mol Cell Biol. 1988 Mar;8(3):1045–1054. doi: 10.1128/mcb.8.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Natsumeda Y., Ohno S., Kawasaki H., Konno Y., Weber G., Suzuki K. Two distinct cDNAs for human IMP dehydrogenase. J Biol Chem. 1990 Mar 25;265(9):5292–5295. [PubMed] [Google Scholar]
  29. Quinn C. M., Bugeja V. C., Gallagher J. A., Whittaker P. A. The effect of mycophenolic acid on the cell cycle of Candida albicans. Mycopathologia. 1990 Sep;111(3):165–168. doi: 10.1007/BF02282799. [DOI] [PubMed] [Google Scholar]
  30. Sanglard D., Kuchler K., Ischer F., Pagani J. L., Monod M., Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995 Nov;39(11):2378–2386. doi: 10.1128/aac.39.11.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saporito S. M., Sypherd P. S. The isolation and characterization of a calmodulin-encoding gene (CMD1) from the dimorphic fungus Candida albicans. Gene. 1991 Sep 30;106(1):43–49. doi: 10.1016/0378-1119(91)90564-r. [DOI] [PubMed] [Google Scholar]
  32. Scherer S., Magee P. T. Genetics of Candida albicans. Microbiol Rev. 1990 Sep;54(3):226–241. doi: 10.1128/mr.54.3.226-241.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sifri C. D., Wilson K., Smolik S., Forte M., Ullman B. Cloning and sequence analysis of a Drosophila melanogaster cDNA encoding IMP dehydrogenase. Biochim Biophys Acta. 1994 Jan 18;1217(1):103–106. [PubMed] [Google Scholar]
  34. Smith H. A., Allaudeen H. S., Whitman M. H., Koltin Y., Gorman J. A. Isolation and characterization of a beta-tubulin gene from Candida albicans. Gene. 1988;63(1):53–63. doi: 10.1016/0378-1119(88)90545-8. [DOI] [PubMed] [Google Scholar]
  35. Tiedeman A. A., Smith J. M. Isolation and sequence of a cDNA encoding mouse IMP dehydrogenase. Gene. 1991 Jan 15;97(2):289–293. doi: 10.1016/0378-1119(91)90065-j. [DOI] [PubMed] [Google Scholar]
  36. Tiedeman A. A., Smith J. M. Nucleotide sequence of the guaB locus encoding IMP dehydrogenase of Escherichia coli K12. Nucleic Acids Res. 1985 Feb 25;13(4):1303–1316. doi: 10.1093/nar/13.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. White T. C., Agabian N. Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol. 1995 Sep;177(18):5215–5221. doi: 10.1128/jb.177.18.5215-5221.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Williams R. H., Lively D. H., DeLong D. C., Cline J. C., Sweeny M. J. Mycophenolic acid: antiviral and antitumor properties. J Antibiot (Tokyo) 1968 Jul;21(7):463–464. doi: 10.7164/antibiotics.21.463. [DOI] [PubMed] [Google Scholar]
  39. Wilson K., Berens R. L., Sifri C. D., Ullman B. Amplification of the inosinate dehydrogenase gene in Trypanosoma brucei gambiense due to an increase in chromosome copy number. J Biol Chem. 1994 Nov 18;269(46):28979–28987. [PubMed] [Google Scholar]
  40. Wilson K., Beverley S. M., Ullman B. Stable amplification of a linear extrachromosomal DNA in mycophenolic acid-resistant Leishmania donovani. Mol Biochem Parasitol. 1992 Oct;55(1-2):197–206. doi: 10.1016/0166-6851(92)90140-f. [DOI] [PubMed] [Google Scholar]
  41. Wilson K., Collart F. R., Huberman E., Stringer J. R., Ullman B. Amplification and molecular cloning of the IMP dehydrogenase gene of Leishmania donovani. J Biol Chem. 1991 Jan 25;266(3):1665–1671. [PubMed] [Google Scholar]
  42. Yaffe M. P., Schatz G. Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4819–4823. doi: 10.1073/pnas.81.15.4819. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES