Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(7):2348–2355. doi: 10.1128/jb.179.7.2348-2355.1997

Translation initiation factor IF2 of the myxobacterium Stigmatella aurantiaca: presence of a single species with an unusual N-terminal sequence.

L Bremaud 1, S Laalami 1, B Derijard 1, Y Cenatiempo 1
PMCID: PMC178973  PMID: 9079922

Abstract

The structural gene for translation initiation factor IF2 (infB) was isolated from the myxobacterium Stigmatella aurantiaca on a 5.18-kb BamHI genomic restriction fragment. The infB gene (ca. 3.16 kb) encodes a 1,054-residue polypeptide with extensive homology within its G domain and C terminus with the equivalent regions of IF2s from Escherichia coli, Bacillus subtilis, Bacillus stearothermophilus, and Streptococcus faecium. The N-terminal region does not display any significant homology to other known proteins. The S. aurantiaca infB gene encodes a single protein which cross-reacted with antiserum to E. coli IF2 and was able to complement an E. coli infB mutant. The S. aurantiaca IF2 is distinguished from all other IF2s by a sequence of 160 residues near the N terminus that has an unusual composition, made up essentially of alanine, proline, valine, and glutamic acid. Within this sequence, the pattern PXXXAP is repeated nine times. Complete deletion of this sequence did not affect the factor's function in initiation of translation and even increased its capacity to complement the E. coli infB mutant.

Full Text

The Full Text of this article is available as a PDF (522.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  2. Bremaud L., Derijard B., Cenatiempo Y. Selective amplification of DNA fragments coding for the G domain of factors IF2 and EF-Tu, two G proteins from the myxobacterium Stigmatella aurantiaca. PCR Methods Appl. 1993 Dec;3(3):195–199. doi: 10.1101/gr.3.3.195. [DOI] [PubMed] [Google Scholar]
  3. Bremaud L., Fremaux C., Laalami S., Cenatiempo Y. Genetic and molecular analysis of the tRNA-tufB operon of the myxobacterium Stigmatella aurantiaca. Nucleic Acids Res. 1995 May 25;23(10):1737–1743. doi: 10.1093/nar/23.10.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brombach M., Gualerzi C. O., Nakamura Y., Pon C. L. Molecular cloning and sequence of the Bacillus stearothermophilus translational initiation factor IF2 gene. Mol Gen Genet. 1986 Oct;205(1):97–102. doi: 10.1007/BF02428037. [DOI] [PubMed] [Google Scholar]
  5. Cenatiempo Y., Deville F., Dondon J., Grunberg-Manago M., Sacerdot C., Hershey J. W., Hansen H. F., Petersen H. U., Clark B. F., Kjeldgaard M. The protein synthesis initiation factor 2 G-domain. Study of a functionally active C-terminal 65-kilodalton fragment of IF2 from Escherichia coli. Biochemistry. 1987 Aug 11;26(16):5070–5076. doi: 10.1021/bi00390a028. [DOI] [PubMed] [Google Scholar]
  6. Cheng Y. L., Kalman L. V., Kaiser D. The dsg gene of Myxococcus xanthus encodes a protein similar to translation initiation factor IF3. J Bacteriol. 1994 Mar;176(5):1427–1433. doi: 10.1128/jb.176.5.1427-1433.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dammel C. S., Noller H. F. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev. 1995 Mar 1;9(5):626–637. doi: 10.1101/gad.9.5.626. [DOI] [PubMed] [Google Scholar]
  8. Dever T. E., Glynias M. J., Merrick W. C. GTP-binding domain: three consensus sequence elements with distinct spacing. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1814–1818. doi: 10.1073/pnas.84.7.1814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dworkin M. Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev. 1996 Mar;60(1):70–102. doi: 10.1128/mr.60.1.70-102.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dérijard B., Ben Aïssa M., Lubochinsky B., Cenatiempo Y. Evidence for a membrane-associated GTP-binding protein in Stigmatella aurantiaca, a prokaryotic cell. Biochem Biophys Res Commun. 1989 Jan 31;158(2):562–568. doi: 10.1016/s0006-291x(89)80086-5. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Friedrich K., Brombach M., Pon C. L. Identification, cloning and sequence of the Streptococcus faecium infB (translational initiation factor IF2) gene. Mol Gen Genet. 1988 Nov;214(3):595–600. doi: 10.1007/BF00330501. [DOI] [PubMed] [Google Scholar]
  13. Gaboriaud C., Bissery V., Benchetrit T., Mornon J. P. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 1987 Nov 16;224(1):149–155. doi: 10.1016/0014-5793(87)80439-8. [DOI] [PubMed] [Google Scholar]
  14. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  15. Hartz D., McPheeters D. S., Gold L. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev. 1989 Dec;3(12A):1899–1912. doi: 10.1101/gad.3.12a.1899. [DOI] [PubMed] [Google Scholar]
  16. Howe J. G., Hershey J. W. A sensitive immunoblotting method for measuring protein synthesis initiation factor levels in lysates of Escherichia coli. J Biol Chem. 1981 Dec 25;256(24):12836–12839. [PubMed] [Google Scholar]
  17. Howe J. G., Hershey J. W. The rate of evolutionary divergence of initiation factors IF2 and IF3 in various bacterial species determined quantitatively by immunoblotting. Arch Microbiol. 1984 Dec;140(2-3):187–192. doi: 10.1007/BF00454924. [DOI] [PubMed] [Google Scholar]
  18. Janata J., Mikulík K. Translation initiation factors of a tetracycline-producing strain of Streptomyces aureofaciens. Biochem Biophys Res Commun. 1995 Mar 17;208(2):569–575. doi: 10.1006/bbrc.1995.1376. [DOI] [PubMed] [Google Scholar]
  19. Kalman L. V., Cheng Y. L., Kaiser D. The Myxococcus xanthus dsg gene product performs functions of translation initiation factor IF3 in vivo. J Bacteriol. 1994 Mar;176(5):1434–1442. doi: 10.1128/jb.176.5.1434-1442.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Komano T., Franceschini T., Inouye S. Identification of a vegetative promoter in Myxococcus xanthus. A protein that has homology to histones. J Mol Biol. 1987 Aug 5;196(3):517–524. doi: 10.1016/0022-2836(87)90029-5. [DOI] [PubMed] [Google Scholar]
  21. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kurihara T., Nakamura Y. Cloning of the nusA gene of Escherichia coli. Mol Gen Genet. 1983;190(2):189–195. doi: 10.1007/BF00330639. [DOI] [PubMed] [Google Scholar]
  23. Laalami S., Putzer H., Plumbridge J. A., Grunberg-Manago M. A severely truncated form of translational initiation factor 2 supports growth of Escherichia coli. J Mol Biol. 1991 Jul 20;220(2):335–349. doi: 10.1016/0022-2836(91)90017-z. [DOI] [PubMed] [Google Scholar]
  24. Lee K., Shimkets L. J. Suppression of a signaling defect during Myxococcus xanthus development. J Bacteriol. 1996 Feb;178(4):977–984. doi: 10.1128/jb.178.4.977-984.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. March P. E. Membrane-associated GTPases in bacteria. Mol Microbiol. 1992 May;6(10):1253–1257. doi: 10.1111/j.1365-2958.1992.tb00845.x. [DOI] [PubMed] [Google Scholar]
  26. McCarthy J. E., Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990 Mar;6(3):78–85. doi: 10.1016/0168-9525(90)90098-q. [DOI] [PubMed] [Google Scholar]
  27. Morel-Deville F., Vachon G., Sacerdot C., Cozzone A. J., Grunberg-Manago M., Cenatiempo Y. Characterization of the translational start site for IF2 beta, a short form of Escherichia coli initiation factor IF2. Eur J Biochem. 1990 Mar 30;188(3):605–614. doi: 10.1111/j.1432-1033.1990.tb15441.x. [DOI] [PubMed] [Google Scholar]
  28. Plumbridge J. A., Deville F., Sacerdot C., Petersen H. U., Cenatiempo Y., Cozzone A., Grunberg-Manago M., Hershey J. W. Two translational initiation sites in the infB gene are used to express initiation factor IF2 alpha and IF2 beta in Escherichia coli. EMBO J. 1985 Jan;4(1):223–229. doi: 10.1002/j.1460-2075.1985.tb02339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Plumbridge J. A., Dondon J., Nakamura Y., Grunberg-Manago M. Effect of NusA protein on expression of the nusA,infB operon in E. coli. Nucleic Acids Res. 1985 May 10;13(9):3371–3388. doi: 10.1093/nar/13.9.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Plumbridge J. A., Howe J. G., Springer M., Touati-Schwartz D., Hershey J. W., Grunberg-Manago M. Cloning and mapping of a gene for translational initiation factor IF2 in Escherichia coli. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5033–5037. doi: 10.1073/pnas.79.16.5033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Plumbridge J. A., Springer M. Organization of the Escherichia coli chromosome around the genes for translation initiation factor IF2 (infB) and a transcription termination factor (nusA). J Mol Biol. 1983 Jun 25;167(2):227–243. doi: 10.1016/s0022-2836(83)80333-7. [DOI] [PubMed] [Google Scholar]
  32. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  33. Sacerdot C., Dessen P., Hershey J. W., Plumbridge J. A., Grunberg-Manago M. Sequence of the initiation factor IF2 gene: unusual protein features and homologies with elongation factors. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7787–7791. doi: 10.1073/pnas.81.24.7787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sacerdot C., Vachon G., Laalami S., Morel-Deville F., Cenatiempo Y., Grunberg-Manago M. Both forms of translational initiation factor IF2 (alpha and beta) are required for maximal growth of Escherichia coli. Evidence for two translational initiation codons for IF2 beta. J Mol Biol. 1992 May 5;225(1):67–80. doi: 10.1016/0022-2836(92)91026-l. [DOI] [PubMed] [Google Scholar]
  35. Sancar A., Hack A. M., Rupp W. D. Simple method for identification of plasmid-coded proteins. J Bacteriol. 1979 Jan;137(1):692–693. doi: 10.1128/jb.137.1.692-693.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sands J. F., Cummings H. S., Sacerdot C., Dondon L., Grunberg-Manago M., Hershey J. W. Cloning and mapping of infA, the gene for protein synthesis initiation factor IF1. Nucleic Acids Res. 1987 Jul 10;15(13):5157–5168. doi: 10.1093/nar/15.13.5157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sands J. F., Regnier P., Cummings H. S., Grunberg-Manago M., Hershey J. W. The existence of two genes between infB and rpsO in the Escherichia coli genome: DNA sequencing and S1 nuclease mapping. Nucleic Acids Res. 1988 Nov 25;16(22):10803–10816. doi: 10.1093/nar/16.22.10803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shazand K., Tucker J., Chiang R., Stansmore K., Sperling-Petersen H. U., Grunberg-Manago M., Rabinowitz J. C., Leighton T. Isolation and molecular genetic characterization of the Bacillus subtilis gene (infB) encoding protein synthesis initiation factor 2. J Bacteriol. 1990 May;172(5):2675–2687. doi: 10.1128/jb.172.5.2675-2687.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shazand K., Tucker J., Grunberg-Manago M., Rabinowitz J. C., Leighton T. Similar organization of the nusA-infB operon in Bacillus subtilis and Escherichia coli. J Bacteriol. 1993 May;175(10):2880–2887. doi: 10.1128/jb.175.10.2880-2887.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shimkets L. J. Social and developmental biology of the myxobacteria. Microbiol Rev. 1990 Dec;54(4):473–501. doi: 10.1128/mr.54.4.473-501.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  43. Springer M., Graffe M., Hennecke H. Specialized transducing phage for the initiation factor 3 gene in Escherichia coli. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3970–3974. doi: 10.1073/pnas.74.9.3970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Starich T., Zissler J. Movement of multiple DNA units between Myxococcus xanthus cells. J Bacteriol. 1989 May;171(5):2323–2336. doi: 10.1128/jb.171.5.2323-2336.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tipper D. J., Johnson C. W., Ginther C. L., Leighton T., Wittmann H. G. Erythromycin resistant mutations in Bacillus subtilis cause temperature sensitive sporulation. Mol Gen Genet. 1977 Jan 18;150(2):147–159. doi: 10.1007/BF00695395. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES