Abstract
Inhibition of cell division in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis results in elongation into long filaments many times the length of dividing cells. As a first step in characterizing the Rhizobium meliloti cell division machinery, we tested whether R. meliloti cells could also form long filaments after cell division was blocked. Unexpectedly, DNA-damaging agents, such as mitomycin C and nalidixic acid, caused only limited elongation. Instead, mitomycin C in particular induced a significant proportion of the cells to branch at the poles. Moreover, methods used to inhibit septation, such as FtsZ overproduction and cephalexin treatment, induced growing cells to swell, bud, or branch while increasing in mass, whereas filamentation was not observed. Overproduction of E. coli FtsZ in R. meliloti resulted in the same branched morphology, as did overproduction of R. meliloti FtsZ in Agrobacterium tumefaciens. These results suggest that in these normally rod-shaped species and perhaps others, branching and swelling are default pathways for increasing mass when cell division is blocked.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addinall S. G., Bi E., Lutkenhaus J. FtsZ ring formation in fts mutants. J Bacteriol. 1996 Jul;178(13):3877–3884. doi: 10.1128/jb.178.13.3877-3884.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akerlund T., Nordström K., Bernander R. Branched Escherichia coli cells. Mol Microbiol. 1993 Nov;10(4):849–858. doi: 10.1111/j.1365-2958.1993.tb00955.x. [DOI] [PubMed] [Google Scholar]
- Begg K. J., Donachie W. D. Cell shape and division in Escherichia coli: experiments with shape and division mutants. J Bacteriol. 1985 Aug;163(2):615–622. doi: 10.1128/jb.163.2.615-622.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brun Y. V., Marczynski G., Shapiro L. The expression of asymmetry during Caulobacter cell differentiation. Annu Rev Biochem. 1994;63:419–450. doi: 10.1146/annurev.bi.63.070194.002223. [DOI] [PubMed] [Google Scholar]
- Burton P., Holland I. B. Two pathways of division inhibition in UV-irradiated E. coli. Mol Gen Genet. 1983;190(2):309–314. doi: 10.1007/BF00330656. [DOI] [PubMed] [Google Scholar]
- Degnen S. T., Newton A. Dependence of cell division on the completion of chromosome replication in Caulobacter. J Bacteriol. 1972 Jun;110(3):852–856. doi: 10.1128/jb.110.3.852-856.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donachie W. D., Addinall S., Begg K. Cell shape and chromosome partition in prokaryotes or, why E. coli is rod-shaped and haploid. Bioessays. 1995 Jun;17(6):569–576. doi: 10.1002/bies.950170616. [DOI] [PubMed] [Google Scholar]
- Donachie W. D. The cell cycle of Escherichia coli. Annu Rev Microbiol. 1993;47:199–230. doi: 10.1146/annurev.mi.47.100193.001215. [DOI] [PubMed] [Google Scholar]
- Fujiwara T., Fukui S. Isolation of morphological mutants of Agrobacterium tumefaciens. J Bacteriol. 1972 May;110(2):743–746. doi: 10.1128/jb.110.2.743-746.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara T., Fukui S. Unidirectional growth and branch formation of a morphological mutant, Agrobacterium tumefaciens. J Bacteriol. 1974 Nov;120(2):583–589. doi: 10.1128/jb.120.2.583-589.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Genthner F. J., Wall J. D. Isolation of a recombination-deficient mutant of Rhodopseudomonas capsulata. J Bacteriol. 1984 Dec;160(3):971–975. doi: 10.1128/jb.160.3.971-975.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guzman L. M., Barondess J. J., Beckwith J. FtsL, an essential cytoplasmic membrane protein involved in cell division in Escherichia coli. J Bacteriol. 1992 Dec;174(23):7716–7728. [PMC free article] [PubMed] [Google Scholar]
- Helmstetter C. E., Pierucci O. Cell division during inhibition of deoxyribonucleic acid synthesis in Escherichia coli. J Bacteriol. 1968 May;95(5):1627–1633. doi: 10.1128/jb.95.5.1627-1633.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneshiro T., Baker F. L., Johnson D. E. Pleomorphism and acetylene-reducing activity of free-living rhizobia. J Bacteriol. 1983 Feb;153(2):1045–1050. doi: 10.1128/jb.153.2.1045-1050.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long S. R., Staskawicz B. J. Prokaryotic plant parasites. Cell. 1993 Jun 4;73(5):921–935. doi: 10.1016/0092-8674(93)90271-q. [DOI] [PubMed] [Google Scholar]
- Ma X., Ehrhardt D. W., Margolin W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12998–13003. doi: 10.1073/pnas.93.23.12998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolin W., Corbo J. C., Long S. R. Cloning and characterization of a Rhizobium meliloti homolog of the Escherichia coli cell division gene ftsZ. J Bacteriol. 1991 Sep;173(18):5822–5830. doi: 10.1128/jb.173.18.5822-5830.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolin W., Long S. R. Rhizobium meliloti contains a novel second homolog of the cell division gene ftsZ. J Bacteriol. 1994 Apr;176(7):2033–2043. doi: 10.1128/jb.176.7.2033-2043.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol. 1982 Jan;149(1):114–122. doi: 10.1128/jb.149.1.114-122.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogawa J., Long S. R. The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev. 1995 Mar 15;9(6):714–729. doi: 10.1101/gad.9.6.714. [DOI] [PubMed] [Google Scholar]
- Quardokus E., Din N., Brun Y. V. Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6314–6319. doi: 10.1073/pnas.93.13.6314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rinken R., Wackernagel W. Inhibition of the recBCD-dependent activation of Chi recombinational hot spots in SOS-induced cells of Escherichia coli. J Bacteriol. 1992 Feb;174(4):1172–1178. doi: 10.1128/jb.174.4.1172-1178.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobral B. W., Honeycutt R. J., Atherly A. G., McClelland M. Electrophoretic separation of the three Rhizobium meliloti replicons. J Bacteriol. 1991 Aug;173(16):5173–5180. doi: 10.1128/jb.173.16.5173-5180.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spratt B. G. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2999–3003. doi: 10.1073/pnas.72.8.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Urban J. E., Dazzo F. B. Succinate-Induced Morphology of Rhizobium trifolii 0403 Resembles That of Bacteroids in Clover Nodules. Appl Environ Microbiol. 1982 Jul;44(1):219–226. doi: 10.1128/aem.44.1.219-226.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VAN DE PUTTE P., VAN DILLEWIJN, ROERSCH A. THE SELECTION OF MUTANTS OF ESCHERICHIA COLI WITH IMPAIRED CELL DIVISION AT ELEVATED TEMPERATURE. Mutat Res. 1964 Jul;106:121–128. doi: 10.1016/0027-5107(64)90014-4. [DOI] [PubMed] [Google Scholar]
- Ward J. E., Jr, Lutkenhaus J. Overproduction of FtsZ induces minicell formation in E. coli. Cell. 1985 Oct;42(3):941–949. doi: 10.1016/0092-8674(85)90290-9. [DOI] [PubMed] [Google Scholar]
- Watson B., Currier T. C., Gordon M. P., Chilton M. D., Nester E. W. Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol. 1975 Jul;123(1):255–264. doi: 10.1128/jb.123.1.255-264.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner R. M., Blackman M. A. Inhibition of deoxyribonucleic acid synthesis and bud formation by nalidixic acid in Hyphomicrobium neptunium. J Bacteriol. 1973 Dec;116(3):1398–1404. doi: 10.1128/jb.116.3.1398-1404.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winzeler E., Shapiro L. Use of flow cytometry to identify a Caulobacter 4.5 S RNA temperature-sensitive mutant defective in the cell cycle. J Mol Biol. 1995 Aug 18;251(3):346–365. doi: 10.1006/jmbi.1995.0439. [DOI] [PubMed] [Google Scholar]