Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(7):2426–2432. doi: 10.1128/jb.179.7.2426-2432.1997

Purification and characterization of the Streptomyces lividans initiator protein DnaA.

J Majka 1, W Messer 1, H Schrempf 1, J Zakrzewska-Czerwińska 1
PMCID: PMC178983  PMID: 9079932

Abstract

The Streptomyces lividans DnaA protein (73 kDa) consists, like the Escherichia coli DnaA protein (52 kDa), of four domains. The larger size of the S. lividans protein is due to an additional stretch of 120 predominantly acidic amino acids within domain II. The S. lividans protein was overproduced as a His-tagged fusion protein. The purified protein (isoelectric point, 5.7) has a weak ATPase activity. By DNase I footprinting studies, each of the 17 DnaA boxes (consensus sequence, TTGTCCACA) in the S. lividans oriC region was found to be protected by the DnaA fusion protein. Purified mutant proteins carrying a deletion of the C-terminally located helix-loop-helix (HLH) motif or with amino acid substitutions in helix A (L577G) or helix B (R595A) no longer interact with DnaA boxes. A substitution of basic amino acids in the loop of the HLH motif (R587A or R589A) entailed the formation of S. lividans mutant DnaA proteins with little or no capacity for binding to DnaA boxes. Thus, like in E. coli, the C-terminally located domain IV is absolutely necessary for the specific binding of DnaA. A mutant protein lacking a stretch of acidic amino acids corresponding to domain II is not affected in its DNA binding capacity. Whether the acidic domain II interacts with accessory proteins remains to be elucidated.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bramhill D., Kornberg A. Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell. 1988 Mar 11;52(5):743–755. doi: 10.1016/0092-8674(88)90412-6. [DOI] [PubMed] [Google Scholar]
  2. Calcutt M. J., Schmidt F. J. Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome. J Bacteriol. 1992 May;174(10):3220–3226. doi: 10.1128/jb.174.10.3220-3226.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chater K. F. Genetics of differentiation in Streptomyces. Annu Rev Microbiol. 1993;47:685–713. doi: 10.1146/annurev.mi.47.100193.003345. [DOI] [PubMed] [Google Scholar]
  4. Chen C. W. Complications and implications of linear bacterial chromosomes. Trends Genet. 1996 May;12(5):192–196. doi: 10.1016/0168-9525(96)30014-0. [DOI] [PubMed] [Google Scholar]
  5. Diederich L., Roth A., Messer W. A versatile plasmid vector system for the regulated expression of genes in Escherichia coli. Biotechniques. 1994 May;16(5):916–923. [PubMed] [Google Scholar]
  6. Ferré-D'Amaré A. R., Prendergast G. C., Ziff E. B., Burley S. K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature. 1993 May 6;363(6424):38–45. doi: 10.1038/363038a0. [DOI] [PubMed] [Google Scholar]
  7. Fujita M. Q., Yoshikawa H., Ogasawara N. Structure of the dnaA and DnaA-box region in the Mycoplasma capricolum chromosome: conservation and variations in the course of evolution. Gene. 1992 Jan 2;110(1):17–23. doi: 10.1016/0378-1119(92)90439-v. [DOI] [PubMed] [Google Scholar]
  8. Fujita M. Q., Yoshikawa H., Ogasawara N. Structure of the dnaA region of Micrococcus luteus: conservation and variations among eubacteria. Gene. 1990 Sep 1;93(1):73–78. doi: 10.1016/0378-1119(90)90138-h. [DOI] [PubMed] [Google Scholar]
  9. Fukuoka T., Moriya S., Yoshikawa H., Ogasawara N. Purification and characterization of an initiation protein for chromosomal replication, DnaA, in Bacillus subtilis. J Biochem. 1990 May;107(5):732–739. doi: 10.1093/oxfordjournals.jbchem.a123117. [DOI] [PubMed] [Google Scholar]
  10. Gille H., Messer W. Localized DNA melting and structural pertubations in the origin of replication, oriC, of Escherichia coli in vitro and in vivo. EMBO J. 1991 Jun;10(6):1579–1584. doi: 10.1002/j.1460-2075.1991.tb07678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hansen E. B., Hansen F. G., von Meyenburg K. The nucleotide sequence of the dnaA gene and the first part of the dnaN gene of Escherichia coli K-12. Nucleic Acids Res. 1982 Nov 25;10(22):7373–7385. doi: 10.1093/nar/10.22.7373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hansen F. G., Koefoed S., Atlung T. Cloning and nucleotide sequence determination of twelve mutant dnaA genes of Escherichia coli. Mol Gen Genet. 1992 Jul;234(1):14–21. doi: 10.1007/BF00272340. [DOI] [PubMed] [Google Scholar]
  13. Kimura M., Ohta T. On some principles governing molecular evolution. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2848–2852. doi: 10.1073/pnas.71.7.2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koch C., Vandekerckhove J., Kahmann R. Escherichia coli host factor for site-specific DNA inversion: cloning and characterization of the fis gene. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4237–4241. doi: 10.1073/pnas.85.12.4237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leblond P., Redenbach M., Cullum J. Physical map of the Streptomyces lividans 66 genome and comparison with that of the related strain Streptomyces coelicolor A3(2). J Bacteriol. 1993 Jun;175(11):3422–3429. doi: 10.1128/jb.175.11.3422-3429.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lezhava A., Mizukami T., Kajitani T., Kameoka D., Redenbach M., Shinkawa H., Nimi O., Kinashi H. Physical map of the linear chromosome of Streptomyces griseus. J Bacteriol. 1995 Nov;177(22):6492–6498. doi: 10.1128/jb.177.22.6492-6498.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lin Y. S., Kieser H. M., Hopwood D. A., Chen C. W. The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol. 1993 Dec;10(5):923–933. doi: 10.1111/j.1365-2958.1993.tb00964.x. [DOI] [PubMed] [Google Scholar]
  18. Littlewood T. D., Evan G. I. Transcription factors 2: helix-loop-helix. Protein Profile. 1995;2(6):621–702. [PubMed] [Google Scholar]
  19. Murre C., Bain G., van Dijk M. A., Engel I., Furnari B. A., Massari M. E., Matthews J. R., Quong M. W., Rivera R. R., Stuiver M. H. Structure and function of helix-loop-helix proteins. Biochim Biophys Acta. 1994 Jun 21;1218(2):129–135. doi: 10.1016/0167-4781(94)90001-9. [DOI] [PubMed] [Google Scholar]
  20. Musialowski M. S., Flett F., Scott G. B., Hobbs G., Smith C. P., Oliver S. G. Functional evidence that the principal DNA replication origin of the Streptomyces coelicolor chromosome is close to the dnaA-gyrB region. J Bacteriol. 1994 Aug;176(16):5123–5125. doi: 10.1128/jb.176.16.5123-5125.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rajagopalan M., Qin M. H., Nash D. R., Madiraju M. V. Mycobacterium smegmatis dnaA region and autonomous replication activity. J Bacteriol. 1995 Nov;177(22):6527–6535. doi: 10.1128/jb.177.22.6527-6535.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roth A., Messer W. The DNA binding domain of the initiator protein DnaA. EMBO J. 1995 May 1;14(9):2106–2111. doi: 10.1002/j.1460-2075.1995.tb07202.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roth A., Urmoneit B., Messer W. Functions of histone-like proteins in the initiation of DNA replication at oriC of Escherichia coli. Biochimie. 1994;76(10-11):917–923. doi: 10.1016/0300-9084(94)90016-7. [DOI] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schaper S., Messer W. Interaction of the initiator protein DnaA of Escherichia coli with its DNA target. J Biol Chem. 1995 Jul 21;270(29):17622–17626. doi: 10.1074/jbc.270.29.17622. [DOI] [PubMed] [Google Scholar]
  26. Sekimizu K., Bramhill D., Kornberg A. ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell. 1987 Jul 17;50(2):259–265. doi: 10.1016/0092-8674(87)90221-2. [DOI] [PubMed] [Google Scholar]
  27. Skarstad K., Boye E. The initiator protein DnaA: evolution, properties and function. Biochim Biophys Acta. 1994 Mar 1;1217(2):111–130. doi: 10.1016/0167-4781(94)90025-6. [DOI] [PubMed] [Google Scholar]
  28. Svaren J., Schmitz J., Hörz W. The transactivation domain of Pho4 is required for nucleosome disruption at the PHO5 promoter. EMBO J. 1994 Oct 17;13(20):4856–4862. doi: 10.1002/j.1460-2075.1994.tb06812.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wojczyk B. S., Czerwinski M., Stwora-Wojczyk M. M., Siegel D. L., Abrams W. R., Wunner W. H., Spitalnik S. L. Purification of a secreted form of recombinant rabies virus glycoprotein: comparison of two affinity tags. Protein Expr Purif. 1996 Mar;7(2):183–193. doi: 10.1006/prep.1996.0026. [DOI] [PubMed] [Google Scholar]
  30. Yoshikawa H., Ogasawara N. Structure and function of DnaA and the DnaA-box in eubacteria: evolutionary relationships of bacterial replication origins. Mol Microbiol. 1991 Nov;5(11):2589–2597. doi: 10.1111/j.1365-2958.1991.tb01967.x. [DOI] [PubMed] [Google Scholar]
  31. Zakrzewska-Czerwińska J., Majka J., Schrempf H. Minimal requirements of the Streptomyces lividans 66 oriC region and its transcriptional and translational activities. J Bacteriol. 1995 Aug;177(16):4765–4771. doi: 10.1128/jb.177.16.4765-4771.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zakrzewska-Czerwińska J., Nardmann J., Schrempf H. Inducible transcription of the dnaA gene from Streptomyces lividans 66. Mol Gen Genet. 1994 Feb;242(4):440–447. doi: 10.1007/BF00281794. [DOI] [PubMed] [Google Scholar]
  33. Zakrzewska-Czerwińska J., Schrempf H. Characterization of an autonomously replicating region from the Streptomyces lividans chromosome. J Bacteriol. 1992 Apr;174(8):2688–2693. doi: 10.1128/jb.174.8.2688-2693.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES