Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(7):2440–2445. doi: 10.1128/jb.179.7.2440-2445.1997

Influence of disruption of the recA gene on genetic instability and genome rearrangement in Streptomyces lividans.

J N Volff 1, J Altenbuchner 1
PMCID: PMC178986  PMID: 9079935

Abstract

Streptomyces lividans TK23 gives rise to chloramphenicol-sensitive (Cml(s)) mutants at a frequency of about 0.5%. This is due to the frequent occurrence of very large chromosomal deletions removing the corresponding chloramphenicol resistance gene. A mutant in which the recA gene has been disrupted (S. lividans FrecD3 [G. Muth, D. Frese, A. Kleber, and W. Wohlleben, personal communication]) segregated about 70 times more chloramphenicol-sensitive mutants than the parental strain. An enhancement of the deletion frequency was responsible for this mutator phenotype. The amplifiable locus AUD1 has a duplicated structure in some S. lividans strains and is frequently highly amplified in some mutants generated by genetic instability. The chromosomal AUD1 is not amplified in strain TK23 because of the lack of one duplication. Nevertheless, AUD1-derived amplifiable units presenting the typical duplicated organization amplified very well in TK23 when carried on a plasmid. No amplification of these units was observed in the recA mutant. The ability to amplify was restored when the wild-type recA gene was introduced into the plasmid carrying the amplifiable unit. These results suggest that the RecA protein plays a role in reducing the level of genetic instability and chromosomal deletions and show that the recA gene is necessary to achieve high-copy-number amplification of AUD1.

Full Text

The Full Text of this article is available as a PDF (437.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbuchner J., Cullum J. DNA amplification and an unstable arginine gene in Streptomyces lividans 66. Mol Gen Genet. 1984;195(1-2):134–138. doi: 10.1007/BF00332735. [DOI] [PubMed] [Google Scholar]
  2. Altenbuchner J., Cullum J. Structure of an amplifiable DNA sequence in Streptomyces lividans 66. Mol Gen Genet. 1985;201(2):192–197. doi: 10.1007/BF00425659. [DOI] [PubMed] [Google Scholar]
  3. Betzler M., Dyson P., Schrempf H. Relationship of an unstable argG gene to a 5.7-kilobase amplifiable DNA sequence in Streptomyces lividans 66. J Bacteriol. 1987 Oct;169(10):4804–4810. doi: 10.1128/jb.169.10.4804-4810.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dittrich W., Betzler M., Schrempf H. An amplifiable and deletable chloramphenicol-resistance determinant of Streptomyces lividans 1326 encodes a putative transmembrane protein. Mol Microbiol. 1991 Nov;5(11):2789–2797. doi: 10.1111/j.1365-2958.1991.tb01987.x. [DOI] [PubMed] [Google Scholar]
  5. Dybvig K. DNA rearrangements and phenotypic switching in prokaryotes. Mol Microbiol. 1993 Nov;10(3):465–471. doi: 10.1111/j.1365-2958.1993.tb00919.x. [DOI] [PubMed] [Google Scholar]
  6. Dyson P., Schrempf H. Genetic instability and DNA amplification in Streptomyces lividans 66. J Bacteriol. 1987 Oct;169(10):4796–4803. doi: 10.1128/jb.169.10.4796-4803.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hopwood D. A., Kieser T., Wright H. M., Bibb M. J. Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J Gen Microbiol. 1983 Jul;129(7):2257–2269. doi: 10.1099/00221287-129-7-2257. [DOI] [PubMed] [Google Scholar]
  8. Kuzminov A. Collapse and repair of replication forks in Escherichia coli. Mol Microbiol. 1995 May;16(3):373–384. doi: 10.1111/j.1365-2958.1995.tb02403.x. [DOI] [PubMed] [Google Scholar]
  9. Leblond P., Fischer G., Francou F. X., Berger F., Guérineau M., Decaris B. The unstable region of Streptomyces ambofaciens includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA. Mol Microbiol. 1996 Jan;19(2):261–271. doi: 10.1046/j.1365-2958.1996.366894.x. [DOI] [PubMed] [Google Scholar]
  10. Lezhava A., Mizukami T., Kajitani T., Kameoka D., Redenbach M., Shinkawa H., Nimi O., Kinashi H. Physical map of the linear chromosome of Streptomyces griseus. J Bacteriol. 1995 Nov;177(22):6492–6498. doi: 10.1128/jb.177.22.6492-6498.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lin Y. S., Kieser H. M., Hopwood D. A., Chen C. W. The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol. 1993 Dec;10(5):923–933. doi: 10.1111/j.1365-2958.1993.tb00964.x. [DOI] [PubMed] [Google Scholar]
  12. Lydiate D. J., Malpartida F., Hopwood D. A. The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene. 1985;35(3):223–235. doi: 10.1016/0378-1119(85)90001-0. [DOI] [PubMed] [Google Scholar]
  13. Nussbaumer B., Wohlleben W. Identification, isolation and sequencing of the recA gene of Streptomyces lividans TK24. FEMS Microbiol Lett. 1994 May 1;118(1-2):57–63. doi: 10.1111/j.1574-6968.1994.tb06803.x. [DOI] [PubMed] [Google Scholar]
  14. PRIDHAM T. G., ANDERSON P., FOLEY C., LINDENFELSER L. A., HESSELTINE C. W., BENEDICT R. G. A selection of media for maintenance and taxonomic study of Streptomyces. Antibiot Annu. 1956:947–953. [PubMed] [Google Scholar]
  15. Piendl W., Eichenseer C., Viel P., Altenbuchner J., Cullum J. Analysis of putative DNA amplification genes in the element AUD1 of Streptomyces lividans 66. Mol Gen Genet. 1994 Aug 15;244(4):439–443. doi: 10.1007/BF00286697. [DOI] [PubMed] [Google Scholar]
  16. Rauland U., Glocker I., Redenbach M., Cullum J. DNA amplifications and deletions in Streptomyces lividans 66 and the loss of one end of the linear chromosome. Mol Gen Genet. 1995 Jan 6;246(1):37–44. doi: 10.1007/BF00290131. [DOI] [PubMed] [Google Scholar]
  17. Redenbach M., Flett F., Piendl W., Glocker I., Rauland U., Wafzig O., Kliem R., Leblond P., Cullum J. The Streptomyces lividans 66 chromosome contains a 1 MB deletogenic region flanked by two amplifiable regions. Mol Gen Genet. 1993 Nov;241(3-4):255–262. doi: 10.1007/BF00284676. [DOI] [PubMed] [Google Scholar]
  18. Smith G. R. Homologous recombination in procaryotes. Microbiol Rev. 1988 Mar;52(1):1–28. doi: 10.1128/mr.52.1.1-28.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thompson C. J., Ward J. M., Hopwood D. A. DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature. 1980 Jul 31;286(5772):525–527. doi: 10.1038/286525a0. [DOI] [PubMed] [Google Scholar]
  20. Volff J. N., Eichenseer C., Viell P., Piendl W., Altenbuchner J. Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans 66. Mol Microbiol. 1996 Sep;21(5):1037–1047. doi: 10.1046/j.1365-2958.1996.761428.x. [DOI] [PubMed] [Google Scholar]
  21. Volff J. N., Vandewiele D., Simonet J. M., Decaris B. Ultraviolet light, mitomycin C and nitrous acid induce genetic instability in Streptomyces ambofaciens ATCC23877. Mutat Res. 1993 Jun;287(2):141–156. doi: 10.1016/0027-5107(93)90008-4. [DOI] [PubMed] [Google Scholar]
  22. Walker G. C. Inducible DNA repair systems. Annu Rev Biochem. 1985;54:425–457. doi: 10.1146/annurev.bi.54.070185.002233. [DOI] [PubMed] [Google Scholar]
  23. Yao W., Vining L. C. Cloning and sequence analysis of a recA-like gene from Streptomyces venezuelae ISP5230. FEMS Microbiol Lett. 1994 May 1;118(1-2):51–56. doi: 10.1111/j.1574-6968.1994.tb06802.x. [DOI] [PubMed] [Google Scholar]
  24. Young M., Cullum J. A plausible mechanism for large-scale chromosomal DNA amplification in streptomycetes. FEBS Lett. 1987 Feb 9;212(1):10–14. doi: 10.1016/0014-5793(87)81547-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES