Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(7):2446–2448. doi: 10.1128/jb.179.7.2446-2448.1997

Characterization of a temperature-sensitive Escherichia coli mutant and revertants with altered seryl-tRNA synthetase activity.

M L Ferri 1, C Vincent 1, R Leberman 1, M Härtlein 1
PMCID: PMC178987  PMID: 9079936

Abstract

A mutation in the structural gene coding for seryl-tRNA synthetase in temperature-sensitive Escherichia coli K28 has been reported to alter the level of enzyme expression at high temperature (R. J. Hill and W. Konigsberg, J. Bacteriol. 141:1163-1169, 1980). We identified this mutation as a C-->T transition in the first base of codon 386, resulting in a replacement of histidine by tyrosine. The steady-state levels of serS mRNA in K28 and in the wild-type strains are very similar. Pulse-chase labeling experiments show a difference in protein stability, but not one important enough to account for the temperature sensitivity of K28. The main reason for the temperature sensitivity of K28 appears to be the low level of specific activity of the mutant synthetase at nonpermissive temperature, not a decreased expression level. Spontaneous temperature-resistant revertants were selected which were found to have about a fivefold-higher level of SerRS than the K28 strain. We identified the mutation responsible for the reversion as being upstream from the -10 sequence in the promoter region. The steady-state levels of serS mRNA in the revertants are significantly higher than that in the parental strain.

Full Text

The Full Text of this article is available as a PDF (652.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba H., Adhya S., de Crombrugghe B. Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem. 1981 Nov 25;256(22):11905–11910. [PubMed] [Google Scholar]
  2. Burns H., Minchin S. Thermal energy requirement for strand separation during transcription initiation: the effect of supercoiling and extended protein DNA contacts. Nucleic Acids Res. 1994 Sep 25;22(19):3840–3845. doi: 10.1093/nar/22.19.3840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke S. J., Low B., Konigsberg W. H. Close linkage of the genes serC (for phosphohydroxy pyruvate transaminase) and serS (for seryl-transfer ribonucleic acid synthetase) in Escherichia coli K-12. J Bacteriol. 1973 Mar;113(3):1091–1095. doi: 10.1128/jb.113.3.1091-1095.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clarke S. J., Low B., Konigsberg W. Isolation and characterization of a regulatory mutant of an aminoacyl-transfer ribonucleic acid synthetase in Escherichia coli K-12. J Bacteriol. 1973 Mar;113(3):1096–1103. doi: 10.1128/jb.113.3.1096-1103.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fujinaga M., Berthet-Colominas C., Yaremchuk A. D., Tukalo M. A., Cusack S. Refined crystal structure of the seryl-tRNA synthetase from Thermus thermophilus at 2.5 A resolution. J Mol Biol. 1993 Nov 5;234(1):222–233. doi: 10.1006/jmbi.1993.1576. [DOI] [PubMed] [Google Scholar]
  6. Grimberg J., Maguire S., Belluscio L. A simple method for the preparation of plasmid and chromosomal E. coli DNA. Nucleic Acids Res. 1989 Nov 11;17(21):8893–8893. doi: 10.1093/nar/17.21.8893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hill R. J., Konigsberg W. Mutation in the structural gene for seryl-transfer ribonucleic acid synthetase of Escherichia coli which affects formation of its gene product at high temperature. J Bacteriol. 1980 Mar;141(3):1163–1169. doi: 10.1128/jb.141.3.1163-1169.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Härtlein M., Madern D., Leberman R. Cloning and characterization of the gene for Escherichia coli seryl-tRNA synthetase. Nucleic Acids Res. 1987 Feb 11;15(3):1005–1017. doi: 10.1093/nar/15.3.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Madern D., Anselme J., Härtlein M. Asparaginyl-tRNA synthetase from the Escherichia coli temperature-sensitive strain HO202. A proline replacement in motif 2 is responsible for a large increase in Km for asparagine and ATP. FEBS Lett. 1992 Mar 24;299(1):85–89. doi: 10.1016/0014-5793(92)80106-q. [DOI] [PubMed] [Google Scholar]
  12. Minchin S., Busby S. Location of close contacts between Escherichia coli RNA polymerase and guanine residues at promoters either with or without consensus -35 region sequences. Biochem J. 1993 Feb 1;289(Pt 3):771–775. doi: 10.1042/bj2890771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES