Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(8):2472–2478. doi: 10.1128/jb.179.8.2472-2478.1997

Structure and regulation of expression of the Bacillus subtilis valyl-tRNA synthetase gene.

D Luo 1, J Leautey 1, M Grunberg-Manago 1, H Putzer 1
PMCID: PMC178992  PMID: 9098041

Abstract

We have sequenced the valyl-tRNA synthetase gene (valS) of Bacillus subtilis and found an open reading frame coding for a protein of 880 amino acids with a molar mass of 101,749. The predicted amino acid sequence shares strong similarity with the valyl-tRNA synthetases from Bacillus stearothermophilus, Lactobacillus casei, and Escherichia coli. Extracts of B. subtilis strains overexpressing the valS gene on a plasmid have increased valyl-tRNA aminoacylation activity. Northern analysis shows that valS is cotranscribed with the folC gene (encoding folyl-polyglutamate synthetase) lying downstream. The 300-bp 5' noncoding region of the gene contains the characteristic regulatory elements, T box, "specifier codon" (GUC), and rho-independant transcription terminator of a gene family in gram-positive bacteria that encodes many aminoacyl-tRNA synthetases and some amino acid biosynthetic enzymes and that is regulated by tRNA-mediated antitermination. We have shown that valS expression is induced by valine limitation and that the specificity of induction can be switched to threonine by changing the GUC (Val) specifier triplet to ACC (Thr). Overexpression of valS from a recombinant plasmid leads to autorepression of a valS-lacZ transcriptional fusion. Like induction by valine starvation, autoregulation of valS depends on the presence of the GUC specifier codon. Disruption of the valS gene was not lethal, suggesting the existence of a second gene, as is the case for both the thrS and the tyrS genes.

Full Text

The Full Text of this article is available as a PDF (486.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brand N. J., Fersht A. R. Molecular cloning of the gene encoding the valyl-tRNA synthetase from Bacillus stearothermophilus. Gene. 1986;44(1):139–142. doi: 10.1016/0378-1119(86)90053-3. [DOI] [PubMed] [Google Scholar]
  2. Bruand C., Sorokin A., Serror P., Ehrlich S. D. Nucleotide sequence of the Bacillus subtilis dnaD gene. Microbiology. 1995 Feb;141(Pt 2):321–322. doi: 10.1099/13500872-141-2-321. [DOI] [PubMed] [Google Scholar]
  3. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene. 1988 Aug 15;68(1):139–149. doi: 10.1016/0378-1119(88)90606-3. [DOI] [PubMed] [Google Scholar]
  4. Condon C., Grunberg-Manago M., Putzer H. Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis. Biochimie. 1996;78(6):381–389. doi: 10.1016/0300-9084(96)84744-4. [DOI] [PubMed] [Google Scholar]
  5. Condon C., Putzer H., Grunberg-Manago M. Processing of the leader mRNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6992–6997. doi: 10.1073/pnas.93.14.6992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  7. Gagnon Y., Breton R., Putzer H., Pelchat M., Grunberg-Manago M., Lapointe J. Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. J Biol Chem. 1994 Mar 11;269(10):7473–7482. [PubMed] [Google Scholar]
  8. Gendron N., Putzer H., Grunberg-Manago M. Expression of both Bacillus subtilis threonyl-tRNA synthetase genes is autogenously regulated. J Bacteriol. 1994 Jan;176(2):486–494. doi: 10.1128/jb.176.2.486-494.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glaser P., Kunst F., Débarbouillé M., Vertès A., Danchin A., Dedonder R. A gene encoding a tyrosine tRNA synthetase is located near sacS in Bacillus subtilis. DNA Seq. 1991;1(4):251–261. doi: 10.3109/10425179109020780. [DOI] [PubMed] [Google Scholar]
  10. Grandoni J. A., Fulmer S. B., Brizzio V., Zahler S. A., Calvo J. M. Regions of the Bacillus subtilis ilv-leu operon involved in regulation by leucine. J Bacteriol. 1993 Dec;175(23):7581–7593. doi: 10.1128/jb.175.23.7581-7593.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grandoni J. A., Zahler S. A., Calvo J. M. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. J Bacteriol. 1992 May;174(10):3212–3219. doi: 10.1128/jb.174.10.3212-3219.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grundy F. J., Henkin T. M. Conservation of a transcription antitermination mechanism in aminoacyl-tRNA synthetase and amino acid biosynthesis genes in gram-positive bacteria. J Mol Biol. 1994 Jan 14;235(2):798–804. doi: 10.1006/jmbi.1994.1038. [DOI] [PubMed] [Google Scholar]
  13. Grundy F. J., Henkin T. M. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell. 1993 Aug 13;74(3):475–482. doi: 10.1016/0092-8674(93)80049-k. [DOI] [PubMed] [Google Scholar]
  14. Grundy F. J., Rollins S. M., Henkin T. M. Interaction between the acceptor end of tRNA and the T box stimulates antitermination in the Bacillus subtilis tyrS gene: a new role for the discriminator base. J Bacteriol. 1994 Aug;176(15):4518–4526. doi: 10.1128/jb.176.15.4518-4526.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guérout-Fleury A. M., Shazand K., Frandsen N., Stragier P. Antibiotic-resistance cassettes for Bacillus subtilis. Gene. 1995 Dec 29;167(1-2):335–336. doi: 10.1016/0378-1119(95)00652-4. [DOI] [PubMed] [Google Scholar]
  16. Heck J. D., Hatfield G. W. Valyl-tRNA synthetase gene of Escherichia coli K12. Molecular genetic characterization. J Biol Chem. 1988 Jan 15;263(2):857–867. [PubMed] [Google Scholar]
  17. Henkin T. M., Glass B. L., Grundy F. J. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J Bacteriol. 1992 Feb;174(4):1299–1306. doi: 10.1128/jb.174.4.1299-1306.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henkin T. M. tRNA-directed transcription antitermination. Mol Microbiol. 1994 Aug;13(3):381–387. doi: 10.1111/j.1365-2958.1994.tb00432.x. [DOI] [PubMed] [Google Scholar]
  19. Hirshfield I. N., Bloch P. L., Van Bogelen R. A., Neidhardt F. C. Multiple forms of lysyl-transfer ribonucleic acid synthetase in Escherichia coli. J Bacteriol. 1981 Apr;146(1):345–351. doi: 10.1128/jb.146.1.345-351.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hirshfield I. N., Tenreiro R., Vanbogelen R. A., Neidhardt F. C. Escherichia coli K-12 lysyl-tRNA synthetase mutant with a novel reversion pattern. J Bacteriol. 1984 May;158(2):615–620. doi: 10.1128/jb.158.2.615-620.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hountondji C., Dessen P., Blanquet S. Sequence similarities among the family of aminoacyl-tRNA synthetases. Biochimie. 1986 Sep;68(9):1071–1078. doi: 10.1016/s0300-9084(86)80181-x. [DOI] [PubMed] [Google Scholar]
  22. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  23. Kunst F., Debarbouille M., Msadek T., Young M., Mauel C., Karamata D., Klier A., Rapoport G., Dedonder R. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J Bacteriol. 1988 Nov;170(11):5093–5101. doi: 10.1128/jb.170.11.5093-5101.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lévêque F., Plateau P., Dessen P., Blanquet S. Homology of lysS and lysU, the two Escherichia coli genes encoding distinct lysyl-tRNA synthetase species. Nucleic Acids Res. 1990 Jan 25;18(2):305–312. doi: 10.1093/nar/18.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Margolis P. S., Driks A., Losick R. Sporulation gene spoIIB from Bacillus subtilis. J Bacteriol. 1993 Jan;175(2):528–540. doi: 10.1128/jb.175.2.528-540.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marta P. T., Ladner R. D., Grandoni J. A. A CUC triplet confers leucine-dependent regulation of the Bacillus subtilis ilv-leu operon. J Bacteriol. 1996 Apr;178(7):2150–2153. doi: 10.1128/jb.178.7.2150-2153.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mohan S., Aghion J., Guillen N., Dubnau D. Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis. J Bacteriol. 1989 Nov;171(11):6043–6051. doi: 10.1128/jb.171.11.6043-6051.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ogasawara N., Nakai S., Yoshikawa H. Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res. 1994;1(1):1–14. doi: 10.1093/dnares/1.1.1. [DOI] [PubMed] [Google Scholar]
  29. Putzer H., Brakhage A. A., Grunberg-Manago M. Independent genes for two threonyl-tRNA synthetases in Bacillus subtilis. J Bacteriol. 1990 Aug;172(8):4593–4602. doi: 10.1128/jb.172.8.4593-4602.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Putzer H., Gendron N., Grunberg-Manago M. Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J. 1992 Aug;11(8):3117–3127. doi: 10.1002/j.1460-2075.1992.tb05384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Putzer H., Laalami S., Brakhage A. A., Condon C., Grunberg-Manago M. Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis: induction, repression and growth-rate regulation. Mol Microbiol. 1995 May;16(4):709–718. doi: 10.1111/j.1365-2958.1995.tb02432.x. [DOI] [PubMed] [Google Scholar]
  32. Renault P., Godon J. J., Goupil N., Delorme C., Corthier G., Ehrlich S. D. Metabolic operons in Lactococci. Dev Biol Stand. 1995;85:431–441. [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schmidt R., Decatur A. L., Rather P. N., Moran C. P., Jr, Losick R. Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J Bacteriol. 1994 Nov;176(21):6528–6537. doi: 10.1128/jb.176.21.6528-6537.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Taylor B. V., Toy J., Sit T. L., Bognar A. L. Cloning and sequence determination of the valS gene, encoding valyl-tRNA synthetase in Lactobacillus casei. J Bacteriol. 1993 Apr;175(8):2475–2478. doi: 10.1128/jb.175.8.2475-2478.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Webster T., Tsai H., Kula M., Mackie G. A., Schimmel P. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Science. 1984 Dec 14;226(4680):1315–1317. doi: 10.1126/science.6390679. [DOI] [PubMed] [Google Scholar]
  37. Wetzel R. Aminoacyl-tRNA synthetase families and their significance to the origin of the genetic code. Orig Life. 1978 Sep;9(1):39–50. doi: 10.1007/BF00929712. [DOI] [PubMed] [Google Scholar]
  38. Wilcox M. Gamma-phosphoryl ester of glu-tRNA-GLN as an intermediate in Bacillus subtilis glutaminyl-tRNA synthesis. Cold Spring Harb Symp Quant Biol. 1969;34:521–528. doi: 10.1101/sqb.1969.034.01.059. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES