Abstract
The marine cyanobacterium Synechococcus strain WH8113 swims in the absence of any recognizable organelles of locomotion. We have found that calcium is required for this motility. Cells deprived of calcium stopped swimming, while addition of calcium completely restored motility. No other divalent ions tested could replace calcium. Terbium, a lanthanide ion, blocked motility even when calcium was present at 10(5)-fold-higher concentrations, presumably by occupying calcium binding sites. Calcium chelators, EGTA or EDTA, blocked motility, even when calcium was present at 25-fold-higher concentrations, presumably by acting as calcium ionophores. Finally, motility was blocked by verapamil and nitrendipine, molecules known to block voltage-gated calcium channels of eukaryotic cells by an allosteric mechanism. These results suggest that a calcium potential is involved in the mechanism of motility.
Full Text
The Full Text of this article is available as a PDF (171.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bean B. P. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6388–6392. doi: 10.1073/pnas.81.20.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berkelman T., Garret-Engele P., Hoffman N. E. The pacL gene of Synechococcus sp. strain PCC 7942 encodes a Ca(2+)-transporting ATPase. J Bacteriol. 1994 Jul;176(14):4430–4436. doi: 10.1128/jb.176.14.4430-4436.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brahamsha B. An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6504–6509. doi: 10.1073/pnas.93.13.6504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deber C. M., Tom-Kun J., Mack E., Grinstein S. Bromo-A23187: a nonfluorescent calcium ionophore for use with fluorescent probes. Anal Biochem. 1985 May 1;146(2):349–352. doi: 10.1016/0003-2697(85)90550-0. [DOI] [PubMed] [Google Scholar]
- Ehlers K. M., Samuel A. D., Berg H. C., Montgomery R. Do cyanobacteria swim using traveling surface waves? Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8340–8343. doi: 10.1073/pnas.93.16.8340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gambel A. M., Desrosiers M. G., Menick D. R. Characterization of a P-type Ca(2+)-ATPase from Flavobacterium odoratum. J Biol Chem. 1992 Aug 5;267(22):15923–15931. [PubMed] [Google Scholar]
- Kusaka I., Matsushita T. Characterization of a Ca2+ uniporter from Bacillus subtilis by partial purification and reconstitution into phospholipid vesicles. J Gen Microbiol. 1987 May;133(5):1337–1342. doi: 10.1099/00221287-133-5-1337. [DOI] [PubMed] [Google Scholar]
- Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
- Martin R. B., Richardson F. S. Lanthanides as probes for calcium in biological systems. Q Rev Biophys. 1979 May;12(2):181–209. doi: 10.1017/s0033583500002754. [DOI] [PubMed] [Google Scholar]
- Matsushita T., Hirata H., Kusaka I. Calcium channel blockers inhibit bacterial chemotaxis. FEBS Lett. 1988 Aug 29;236(2):437–440. doi: 10.1016/0014-5793(88)80072-3. [DOI] [PubMed] [Google Scholar]
- Murvanidze G. V., Glagolev A. N. Electrical nature of the taxis signal in cyanobacteria. J Bacteriol. 1982 Apr;150(1):239–244. doi: 10.1128/jb.150.1.239-244.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Hara P. B. Lanthanide ions as luminescent probes of biomolecular structure. Photochem Photobiol. 1987 Dec;46(6):1067–1070. doi: 10.1111/j.1751-1097.1987.tb04894.x. [DOI] [PubMed] [Google Scholar]
- Ordal G. W. Calcium ion regulates chemotactic behaviour in bacteria. Nature. 1977 Nov 3;270(5632):66–67. doi: 10.1038/270066a0. [DOI] [PubMed] [Google Scholar]
- Pitta T. P., Berg H. C. Self-electrophoresis is not the mechanism for motility in swimming cyanobacteria. J Bacteriol. 1995 Oct;177(19):5701–5703. doi: 10.1128/jb.177.19.5701-5703.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Resch C. M., Gibson J. Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J Bacteriol. 1983 Jul;155(1):345–350. doi: 10.1128/jb.155.1.345-350.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone HA, Samuel AD. Propulsion of Microorganisms by Surface Distortions. Phys Rev Lett. 1996 Nov 4;77(19):4102–4104. doi: 10.1103/PhysRevLett.77.4102. [DOI] [PubMed] [Google Scholar]
- Tisa L. S., Adler J. Cytoplasmic free-Ca2+ level rises with repellents and falls with attractants in Escherichia coli chemotaxis. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10777–10781. doi: 10.1073/pnas.92.23.10777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tisa L. S., Olivera B. M., Adler J. Inhibition of Escherichia coli chemotaxis by omega-conotoxin, a calcium ion channel blocker. J Bacteriol. 1993 Mar;175(5):1235–1238. doi: 10.1128/jb.175.5.1235-1238.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterbury J. B., Willey J. M., Franks D. G., Valois F. W., Watson S. W. A cyanobacterium capable of swimming motility. Science. 1985 Oct 4;230(4721):74–76. doi: 10.1126/science.230.4721.74. [DOI] [PubMed] [Google Scholar]
- Willey J. M., Waterbury J. B., Greenberg E. P. Sodium-coupled motility in a swimming cyanobacterium. J Bacteriol. 1987 Aug;169(8):3429–3434. doi: 10.1128/jb.169.8.3429-3434.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Womack B. J., Gilmore D. F., White D. Calcium requirement for gliding motility in myxobacteria. J Bacteriol. 1989 Nov;171(11):6093–6096. doi: 10.1128/jb.171.11.6093-6096.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]