Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(8):2641–2650. doi: 10.1128/jb.179.8.2641-2650.1997

In vivo and in vitro bioconversion of epsilon-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA.

M L Dickens 1, N D Priestley 1, W R Strohl 1
PMCID: PMC179014  PMID: 9098063

Abstract

We recently determined the function of the gene product of Streptomyces sp. strain C5 doxA, a cytochrome P-450-like protein, to be daunorubicin C-14 hydroxylase (M. L. Dickens and W. R. Strohl, J. Bacteriol. 178: 3389-3395, 1996). In the present study, we show that DoxA also catalyzes the hydroxylation of 13-deoxycarminomycin and 13-deoxydaunorubicin to 13-dihydrocarminomycin and 13-dihydrodaunorubicin, respectively, as well as oxidizing the 13-dihydro-anthracyclines to their respective 13-keto forms. The Streptomyces sp. strain C5 dauP gene product also was shown unequivocally to remove the carbomethoxy group of the epsilon-rhodomycinone-glycoside (rhodomycin D) to form 10-carboxy-13-deoxycarminomycin. Additionally, Streptomyces sp. strain C5 DauK was found to methylate the anthracyclines rhodomycin D, 10-carboxy-13-deoxycarminomycin, and 13-deoxy-carminomycin, at the 4-hydroxyl position, indicating a broader substrate specificity than was previously known. The products of Streptomyces sp. strain C5 doxA, dauK, and dauP were sufficient and necessary to confer on Streptomyces lividans TK24 the ability to convert rhodomycin D, the first glycoside in daunorubicin and doxorubicin biosynthesis, to doxorubicin.

Full Text

The Full Text of this article is available as a PDF (246.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. F., Hutchinson C. R. Characterization of Saccharopolyspora erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase. J Bacteriol. 1992 Feb;174(3):725–735. doi: 10.1128/jb.174.3.725-735.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., Spalla C. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng. 1969 Nov;11(6):1101–1110. doi: 10.1002/bit.260110607. [DOI] [PubMed] [Google Scholar]
  3. Brockmann H., Zunker R., Brockmann H., Jr Rhodomycine, XI; Antibiotica aus Actinomyceten, LV. Synthese von Descarbomethoxy-bisanhydro-epsilon-rhodomycinon. Justus Liebigs Ann Chem. 1966;696:145–159. doi: 10.1002/jlac.19666960117. [DOI] [PubMed] [Google Scholar]
  4. Carter M. J., Milton I. D. An inexpensive and simple method for DNA purifications on silica particles. Nucleic Acids Res. 1993 Feb 25;21(4):1044–1044. doi: 10.1093/nar/21.4.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cassinelli G., Forenza S., Rivola G., Arcamone F., Grein A., Merli S., Casazza A. M. 13-Deoxycarminomycin, a new biosynthetic anthracycline. J Nat Prod. 1985 May-Jun;48(3):435–439. doi: 10.1021/np50039a011. [DOI] [PubMed] [Google Scholar]
  6. Connors N. C., Strohl W. R. Partial purification and properties of carminomycin 4-O-methyltransferase from Streptomyces sp. strain C5. J Gen Microbiol. 1993 Jun;139(Pt 6):1353–1362. doi: 10.1099/00221287-139-6-1353. [DOI] [PubMed] [Google Scholar]
  7. Crespi-Perellino N., Grein A., Merli S., Minghetti A., Spalla C. Biosynthetic relationships among daunorubicin, doxorubicin and 13-dihydrodaunorubicin in Streptomyces peucetius. Experientia. 1982 Dec 15;38(12):1455–1456. doi: 10.1007/BF01955767. [DOI] [PubMed] [Google Scholar]
  8. DIMARCO A., GAETANI M., OREZZI P., SCARPINATO B. M., SILVESTRINI R., SOLDATI M., DASDIA T., VALENTINI L. 'DAUNOMYCIN', A NEW ANTIBIOTIC OF THE RHODOMYCIN GROUP. Nature. 1964 Feb 15;201:706–707. doi: 10.1038/201706a0. [DOI] [PubMed] [Google Scholar]
  9. DUBOST M., GANTER P., MARAL R., NINET L., PINNERT S., PREUDHOMME J., WERNER G. H. UN NOUVEL ANTIBIOTIQUE 'A PROPRI'ET'ES CYTOSTATIQUES: LA RUBIDOMYCINE. C R Hebd Seances Acad Sci. 1963 Sep 9;257:1813–1815. [PubMed] [Google Scholar]
  10. Dickens M. L., Strohl W. R. Isolation and characterization of a gene from Streptomyces sp. strain C5 that confers the ability to convert daunomycin to doxorubicin on Streptomyces lividans TK24. J Bacteriol. 1996 Jun;178(11):3389–3395. doi: 10.1128/jb.178.11.3389-3395.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dickens M. L., Ye J., Strohl W. R. Analysis of clustered genes encoding both early and late steps in daunomycin biosynthesis by Streptomyces sp. strain C5. J Bacteriol. 1995 Feb;177(3):536–543. doi: 10.1128/jb.177.3.536-543.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dickens M. L., Ye J., Strohl W. R. Cloning, sequencing, and analysis of aklaviketone reductase from Streptomyces sp. strain C5. J Bacteriol. 1996 Jun;178(11):3384–3388. doi: 10.1128/jb.178.11.3384-3388.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eckardt K., Schumann G., Gräfe U., Ihn W., Wagner C., Fleck W. F., Thrum H. Preparation of labeled aklanonic acid and its bioconversion to anthracyclinones by mutants of Streptomyces griseus. J Antibiot (Tokyo) 1985 Aug;38(8):1096–1097. doi: 10.7164/antibiotics.38.1096. [DOI] [PubMed] [Google Scholar]
  14. Eckardt K., Tresselt D., Schumann G., Ihn W., Wagner C. Isolation and chemical structure of aklanonic acid, an early intermediate in the biosynthesis of anthracyclines. J Antibiot (Tokyo) 1985 Aug;38(8):1034–1039. doi: 10.7164/antibiotics.38.1034. [DOI] [PubMed] [Google Scholar]
  15. Fujii S., Kubo K., Johdo O., Yoshimoto A., Ishikura T., Naganawa H., Sawa T., Takeuchi T., Umezawa H. A new anthracycline metabolite D788-1 (10-carboxy-13-deoxocarminomycin) in daunorubicin beer. J Antibiot (Tokyo) 1986 Mar;39(3):473–475. doi: 10.7164/antibiotics.39.473. [DOI] [PubMed] [Google Scholar]
  16. Grimm A., Madduri K., Ali A., Hutchinson C. R. Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene. 1994 Dec 30;151(1-2):1–10. doi: 10.1016/0378-1119(94)90625-4. [DOI] [PubMed] [Google Scholar]
  17. Hutchinson C. R. Anthracyclines. Biotechnology. 1995;28:331–357. doi: 10.1016/b978-0-7506-9095-9.50021-6. [DOI] [PubMed] [Google Scholar]
  18. Imamura K., Odagawa A., Tanabe K., Hayakawa Y., Otake N. Akrobomycin, a new anthracycline antibiotic. J Antibiot (Tokyo) 1984 Jan;37(1):83–84. doi: 10.7164/antibiotics.37.83. [DOI] [PubMed] [Google Scholar]
  19. Inouye M., Takada Y., Muto N., Beppu T., Horinouchi S. Characterization and expression of a P-450-like mycinamicin biosynthesis gene using a novel Micromonospora-Escherichia coli shuttle cosmid vector. Mol Gen Genet. 1994 Nov 15;245(4):456–464. doi: 10.1007/BF00302258. [DOI] [PubMed] [Google Scholar]
  20. Janssen G. R., Bibb M. J. Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene. 1993 Feb 14;124(1):133–134. doi: 10.1016/0378-1119(93)90774-w. [DOI] [PubMed] [Google Scholar]
  21. Kern D. L., Bunge R. H., French J. C., Dion H. W. The identification of epsilon-rhodomycinone and 7-deoxy-daunorubicinol aglycone in daunorubicin beers. J Antibiot (Tokyo) 1977 May;30(5):432–434. doi: 10.7164/antibiotics.30.432. [DOI] [PubMed] [Google Scholar]
  22. Lampel J. S., Aphale J. S., Lampel K. A., Strohl W. R. Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326. J Bacteriol. 1992 May;174(9):2797–2808. doi: 10.1128/jb.174.9.2797-2808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Madduri K., Hutchinson C. R. Functional characterization and transcriptional analysis of a gene cluster governing early and late steps in daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol. 1995 Jul;177(13):3879–3884. doi: 10.1128/jb.177.13.3879-3884.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Madduri K., Torti F., Colombo A. L., Hutchinson C. R. Cloning and sequencing of a gene encoding carminomycin 4-O-methyltransferase from Streptomyces peucetius and its expression in Escherichia coli. J Bacteriol. 1993 Jun;175(12):3900–3904. doi: 10.1128/jb.175.12.3900-3904.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marshall V. P., McGovren J. P., Richard F. A., Richard R. E., Wiley P. F. Microbial metabolism of anthracycline antibiotics daunomycin and adriamycin. J Antibiot (Tokyo) 1978 Apr;31(4):336–342. doi: 10.7164/antibiotics.31.336. [DOI] [PubMed] [Google Scholar]
  26. Niemi J., Mäntsälä P. Nucleotide sequences and expression of genes from Streptomyces purpurascens that cause the production of new anthracyclines in Streptomyces galilaeus. J Bacteriol. 1995 May;177(10):2942–2945. doi: 10.1128/jb.177.10.2942-2945.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Niemi J., Ylihonko K., Hakala J., Pärssinen R., Kopio A., Mäntsälä P. Hybrid anthracycline antibiotics: production of new anthracyclines by cloned genes from Streptomyces purpurascens in Streptomyces galilaeus. Microbiology. 1994 Jun;140(Pt 6):1351–1358. doi: 10.1099/00221287-140-6-1351. [DOI] [PubMed] [Google Scholar]
  28. Oki T., Matsuzawa Y., Kiyoshima K., Yoshimoto A., Naganawa H., Takeuchi T., Umezawa H. New anthracyclines, feudomycins, produced by the mutant from Streptomyces coeruleorubidus ME130-A4. J Antibiot (Tokyo) 1981 Jul;34(7):783–790. doi: 10.7164/antibiotics.34.783. [DOI] [PubMed] [Google Scholar]
  29. Oki T., Takatsuki Y., Tobe H., Yoshimoto A., Takeuchi T., Umezawa H. Microbial conversion of daunomycin, carminomycin I and feudomycin A to adriamycin. J Antibiot (Tokyo) 1981 Sep;34(9):1229–1231. doi: 10.7164/antibiotics.34.1229. [DOI] [PubMed] [Google Scholar]
  30. Otten S. L., Liu X., Ferguson J., Hutchinson C. R. Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J Bacteriol. 1995 Nov;177(22):6688–6692. doi: 10.1128/jb.177.22.6688-6692.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schumann G., Stengel C., Eckardt K., Ihn W. Biotransformation of aklanonic acid by blocked mutants of anthracycline-producing strains of Streptomyces galilaeus and Streptomyces peucetius. J Basic Microbiol. 1986;26(4):249–255. doi: 10.1002/jobm.3620260416. [DOI] [PubMed] [Google Scholar]
  32. Strohl W. R., Connors N. C. Significance of anthraquinone formation resulting from the cloning of actinorhodin genes in heterologous streptomycetes. Mol Microbiol. 1992 Jan;6(2):147–152. doi: 10.1111/j.1365-2958.1992.tb01995.x. [DOI] [PubMed] [Google Scholar]
  33. Stutzman-Engwall K. J., Otten S. L., Hutchinson C. R. Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol. 1992 Jan;174(1):144–154. doi: 10.1128/jb.174.1.144-154.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vara J., Lewandowska-Skarbek M., Wang Y. G., Donadio S., Hutchinson C. R. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol. 1989 Nov;171(11):5872–5881. doi: 10.1128/jb.171.11.5872-5881.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wagner C., Eckardt K., Ihn W., Schumann G., Stengel C., Fleck W. F., Tresselt D. Biosynthese der Anthracycline: eine Neuinterpretation der Ergebnisse zur Daunomycin-Biosynthese. J Basic Microbiol. 1991;31(3):223–240. doi: 10.1002/jobm.3620310311. [DOI] [PubMed] [Google Scholar]
  36. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  37. Ye J., Dickens M. L., Plater R., Li Y., Lawrence J., Strohl W. R. Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J Bacteriol. 1994 Oct;176(20):6270–6280. doi: 10.1128/jb.176.20.6270-6280.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yoshimoto A., Fujii S., Johdo O., Kubo K., Nishida H., Okamoto R., Takeuchi T. Anthracycline metabolites from baumycin-producing Streptomyces sp. D788. II. New anthracycline metabolites produced by a blocked mutant strain RPM-5. J Antibiot (Tokyo) 1993 Jan;46(1):56–64. doi: 10.7164/antibiotics.46.56. [DOI] [PubMed] [Google Scholar]
  39. Yoshimoto A., Johdo O., Fujii S., Kubo K., Nishida H., Okamoto R., Takeuchi T. Anthracycline metabolites from baumycin-producing Streptomyces sp. D788. I. Isolation of antibiotic-blocked mutants and their characterization. J Antibiot (Tokyo) 1992 Aug;45(8):1255–1267. doi: 10.7164/antibiotics.45.1255. [DOI] [PubMed] [Google Scholar]
  40. Yoshimoto A., Oki T., Takeuchi T., Umezawa H. Microbial conversion of anthracyclinones to daunomycin by blocked mutants of Streptomyces coeruleorubidus. J Antibiot (Tokyo) 1980 Oct;33(10):1158–1166. doi: 10.7164/antibiotics.33.1158. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES