Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(8):2658–2667. doi: 10.1128/jb.179.8.2658-2667.1997

Characterization of the stringent and relaxed responses of Streptococcus equisimilis.

U Mechold 1, H Malke 1
PMCID: PMC179016  PMID: 9098065

Abstract

The 739-codon rel(Seq) gene of Streptococcus equisimilis H46A is bifunctional, encoding a strong guanosine 3',5'-bis(diphosphate) 3'-pyrophosphohydrolase (ppGppase) and a weaker ribosome-independent ATP:GTP 3'-pyrophosphoryltransferase [(p)ppGpp synthetase]. To analyze the function of this gene, (p)ppGpp accumulation patterns as well as protein and RNA synthesis were compared during amino acid deprivation and glucose exhaustion between the wild type and an insertion mutant carrying a rel(Seq) gene disrupted at codon 216. We found that under normal conditions, both strains contained basal levels of (p)ppGpp. Amino acid deprivation imposed by pseudomonic acid or isoleucine hydroxamate triggered a rel(Seq)-dependent stringent response characterized by rapid (p)ppGpp accumulation at the expense of GTP and abrupt cessation of net RNA accumulation in the wild type but not in the mutant. Tetracycline added to block (p)ppGpp synthesis caused the accumulated (p)ppGpp to degrade rapidly, with a concomitant increase of the GTP pool (decay constant of ppGpp, approximately 0.7 min(-1)). Simultaneous addition of pseudomonic acid and tetracycline to mimic a relaxed response caused wild-type RNA synthesis to proceed at rates approximating those seen under either condition in the mutant. Glucose exhaustion provoked the (p)ppGpp accumulation response in both the wild type and the rel(Seq) insertion mutant, consistent with the block of net RNA accumulation in both strains. Although the source of (p)ppGpp synthesis during glucose exhaustion remains to be determined, these findings reinforce the idea entertained previously that rel(Seq) fulfils functions that reside separately in the paralogous reL4 and spoT genes of Escherichia coli. Analysis of (p)ppGpp accumulation patterns was complicated by finding an unknown phosphorylated compound that comigrated with ppGpp under two standard thin-layer chromatography conditions. Unlike ppGpp, this compound did not adsorb to charcoal and did not accumulate appreciably during isoleucine deprivation. Like ppGpp, the unknown compound did accumulate during energy source starvation.

Full Text

The Full Text of this article is available as a PDF (813.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belitskii B. R., Shakulov R. S. Soderzhanie guanozinpolifosfatov i sintez stabil'noi RNK v kletkakh Bacillus subtilis pri podavlenii sinteza belka. Mol Biol (Mosk) 1980 Nov-Dec;14(6):1342–1353. [PubMed] [Google Scholar]
  2. Cashel M., Kalbacher B. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J Biol Chem. 1970 May 10;245(9):2309–2318. [PubMed] [Google Scholar]
  3. Cassels R., Oliva B., Knowles D. Occurrence of the regulatory nucleotides ppGpp and pppGpp following induction of the stringent response in staphylococci. J Bacteriol. 1995 Sep;177(17):5161–5165. doi: 10.1128/jb.177.17.5161-5165.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cochran J. W., Byrne R. W. Isolation and properties of a ribosome-bound factor required for ppGpp and ppGpp synthesis in Escherichia coli. J Biol Chem. 1974 Jan 25;249(2):353–360. [PubMed] [Google Scholar]
  5. Condon C., Squires C., Squires C. L. Control of rRNA transcription in Escherichia coli. Microbiol Rev. 1995 Dec;59(4):623–645. doi: 10.1128/mr.59.4.623-645.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fiil N. P., Willumsen B. M., Friesen J. D., von Meyenburg K. Interaction of alleles of the relA, relC and spoT genes in Escherichia coli: analysis of the interconversion of GTP, ppGpp and pppGpp. Mol Gen Genet. 1977 Jan 7;150(1):87–101. doi: 10.1007/BF02425329. [DOI] [PubMed] [Google Scholar]
  7. Flärdh K., Axberg T., Albertson N. H., Kjelleberg S. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene. J Bacteriol. 1994 Oct;176(19):5949–5957. doi: 10.1128/jb.176.19.5949-5957.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  9. Gallant J., Margason G. Amino acid control of messenger ribonucleic acid synthesis in Bacillus subtilis. J Biol Chem. 1972 Apr 25;247(8):2289–2294. [PubMed] [Google Scholar]
  10. Gallant J., Margason G., Finch B. On the turnover of ppGpp in Escherichia coli. J Biol Chem. 1972 Oct 10;247(19):6055–6058. [PubMed] [Google Scholar]
  11. Gentry D. R., Cashel M. Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol Microbiol. 1996 Mar;19(6):1373–1384. doi: 10.1111/j.1365-2958.1996.tb02480.x. [DOI] [PubMed] [Google Scholar]
  12. Goldman E., Jakubowski H. Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol Microbiol. 1990 Dec;4(12):2035–2040. doi: 10.1111/j.1365-2958.1990.tb00563.x. [DOI] [PubMed] [Google Scholar]
  13. Haseltine W. A., Block R., Gilbert W., Weber K. MSI and MSII made on ribosome in idling step of protein synthesis. Nature. 1972 Aug 18;238(5364):381–384. doi: 10.1038/238381a0. [DOI] [PubMed] [Google Scholar]
  14. Haseltine W. A., Block R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1564–1568. doi: 10.1073/pnas.70.5.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hernandez V. J., Bremer H. Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem. 1991 Mar 25;266(9):5991–5999. [PubMed] [Google Scholar]
  16. Hughes J., Mellows G. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem J. 1978 Oct 15;176(1):305–318. doi: 10.1042/bj1760305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaplan S., Atherly A. G., Barrett A. Synthesis of stable RNA in stringent Escherichia coli cells in the absence of charged transfer RNA. Proc Natl Acad Sci U S A. 1973 Mar;70(3):689–692. doi: 10.1073/pnas.70.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kornberg A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol. 1995 Feb;177(3):491–496. doi: 10.1128/jb.177.3.491-496.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lazzarini R. A., Cashel M., Gallant J. On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. J Biol Chem. 1971 Jul 25;246(14):4381–4385. [PubMed] [Google Scholar]
  20. Ludwig J. R., 2nd, Oliver S. G., McLaughlin C. S. The effect of amino acids on growth and phosphate metabolism in a prototrophic yeast strain. Biochem Biophys Res Commun. 1977 Nov 7;79(1):16–23. doi: 10.1016/0006-291x(77)90054-7. [DOI] [PubMed] [Google Scholar]
  21. Mechold U., Cashel M., Steiner K., Gentry D., Malke H. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis. J Bacteriol. 1996 Mar;178(5):1401–1411. doi: 10.1128/jb.178.5.1401-1411.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mechold U., Steiner K., Vettermann S., Malke H. Genetic organization of the streptokinase region of the Streptococcus equisimilis H46A chromosome. Mol Gen Genet. 1993 Oct;241(1-2):129–140. doi: 10.1007/BF00280210. [DOI] [PubMed] [Google Scholar]
  23. Metzger S., Schreiber G., Aizenman E., Cashel M., Glaser G. Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. J Biol Chem. 1989 Dec 15;264(35):21146–21152. [PubMed] [Google Scholar]
  24. Nierlich D. P. Amino acid control over RNA synthesis: a re-evaluation. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1345–1352. doi: 10.1073/pnas.60.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pedersen F. S., Kjeldgaard N. O. Analysis of the relA gene product of Escherichia coli. Eur J Biochem. 1977 Jun 1;76(1):91–97. doi: 10.1111/j.1432-1033.1977.tb11573.x. [DOI] [PubMed] [Google Scholar]
  26. Rao N. N., Kornberg A. Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J Bacteriol. 1996 Mar;178(5):1394–1400. doi: 10.1128/jb.178.5.1394-1400.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rojiani M. V., Jakubowski H., Goldman E. Effect of variation of charged and uncharged tRNA(Trp) levels on ppGpp synthesis in Escherichia coli. J Bacteriol. 1989 Dec;171(12):6493–6502. doi: 10.1128/jb.171.12.6493-6502.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rojiani M. V., Jakubowski H., Goldman E. Relationship between protein synthesis and concentrations of charged and uncharged tRNATrp in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1511–1515. doi: 10.1073/pnas.87.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sarubbi E., Rudd K. E., Cashel M. Basal ppGpp level adjustment shown by new spoT mutants affect steady state growth rates and rrnA ribosomal promoter regulation in Escherichia coli. Mol Gen Genet. 1988 Aug;213(2-3):214–222. doi: 10.1007/BF00339584. [DOI] [PubMed] [Google Scholar]
  30. Schreiber G., Metzger S., Aizenman E., Roza S., Cashel M., Glaser G. Overexpression of the relA gene in Escherichia coli. J Biol Chem. 1991 Feb 25;266(6):3760–3767. [PubMed] [Google Scholar]
  31. Scoarughi G. L., Cimmino C., Donini P. Lack of production of (p)ppGpp in Halobacterium volcanii under conditions that are effective in the eubacteria. J Bacteriol. 1995 Jan;177(1):82–85. doi: 10.1128/jb.177.1.82-85.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Solimene R., Guerrini A. M., Donini P. Levels of acid-soluble polyphosphate in growing cultures of Saccharomyces cerevisiae. J Bacteriol. 1980 Aug;143(2):710–714. doi: 10.1128/jb.143.2.710-714.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Steiner K., Malke H. Transcription termination of the streptokinase gene of Streptococcus equisimilis H46A: bidirectionality and efficiency in homologous and heterologous hosts. Mol Gen Genet. 1995 Feb 6;246(3):374–380. doi: 10.1007/BF00288611. [DOI] [PubMed] [Google Scholar]
  34. Svitil A. L., Cashel M., Zyskind J. W. Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J Biol Chem. 1993 Feb 5;268(4):2307–2311. [PubMed] [Google Scholar]
  35. Winslow R. M., Lazzarini R. A. The rates of synthesis and chain elongation of ribonucleic acid in Escherichia coli. J Biol Chem. 1969 Mar 10;244(5):1128–1136. [PubMed] [Google Scholar]
  36. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem. 1991 Mar 25;266(9):5980–5990. [PubMed] [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  38. van de Guchte M., van der Vossen J. M., Kok J., Venema G. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1989 Jan;55(1):224–228. doi: 10.1128/aem.55.1.224-228.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van de Rijn I., Kessler R. E. Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun. 1980 Feb;27(2):444–448. doi: 10.1128/iai.27.2.444-448.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES