Abstract
A cluster of citrulline biosynthetic genes has been cloned and sequenced from a fragment of Lactobacillus plantarum CCM 1904 (ATCC 8014) DNA isolated as complementing a Bacillus subtilis argF mutation. The gene order was carA-argCJBDF, with carA transcribed divergently from the arg cluster. Although other gram-positive bacteria show similar arg clusters, this arrangement for carA is thus far unprecedented. Downstream from the arg cluster, two open reading frames (ORF7 and ORF8) having unknown functions were found. Sequence analysis of the end of a 10.5-kb cloned DNA fragment showed that argF was 3.5 kb from the ldhL gene coding for L-(+)-lactate dehydrogenase. A tree representation of amino acid sequence clustering relationships of 31 ornithine carbamoyltransferases (OTCases) from various organisms revealed two prokaryotic groups: one with ArgF of L. plantarum and one with ArgF of B. subtilis, which are paralogous. This divergence was not observed in vivo because an L. plantarum argF mutant (AM 1215) harboring no OTCase activity was complemented by the argF genes of L. plantarum and B. subtilis. No OTCase activity was detectable when L. plantarum was grown in the presence of saturating amounts of arginine or citrulline. Arginine may repress the citrulline biosynthetic genes in L. plantarum by using 11 identified DNA motifs which resemble the Escherichia coli ARG box consensus and which are in most cases separated by multiples of 11 bp, corresponding to a DNA helical turn. The carA and argCJBDF genes are divergently transcribed. Their putative promoters are 6 bp apart and are partially overlapped by putative ARG boxes, suggesting concerted transcription regulation.
Full Text
The Full Text of this article is available as a PDF (783.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouia A., Bringel F., Frey L., Belarbi A., Guyonvarch A., Kammerer B., Hubert J. C. Cloning and structure of the pyrE gene of Lactobacillus plantarum CCM 1904. FEMS Microbiol Lett. 1990 Jun 1;57(3):233–238. doi: 10.1016/0378-1097(90)90072-x. [DOI] [PubMed] [Google Scholar]
- Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986 Sep;50(3):314–352. doi: 10.1128/mr.50.3.314-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czaplewski L. G., North A. K., Smith M. C., Baumberg S., Stockley P. G. Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis. Mol Microbiol. 1992 Jan;6(2):267–275. doi: 10.1111/j.1365-2958.1992.tb02008.x. [DOI] [PubMed] [Google Scholar]
- Delorme C., Ehrlich S. D., Renault P. Histidine biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol. 1992 Oct;174(20):6571–6579. doi: 10.1128/jb.174.20.6571-6579.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elagöz A., Abdi A., Hubert J. C., Kammerer B. Structure and organisation of the pyrimidine biosynthesis pathway genes in Lactobacillus plantarum: a PCR strategy for sequencing without cloning. Gene. 1996 Dec 5;182(1-2):37–43. doi: 10.1016/s0378-1119(96)00461-1. [DOI] [PubMed] [Google Scholar]
- Feng D. F., Doolittle R. F. Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 1990;183:375–387. doi: 10.1016/0076-6879(90)83025-5. [DOI] [PubMed] [Google Scholar]
- Ferain T., Garmyn D., Bernard N., Hols P., Delcour J. Lactobacillus plantarum ldhL gene: overexpression and deletion. J Bacteriol. 1994 Feb;176(3):596–601. doi: 10.1128/jb.176.3.596-601.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Floriano B., Herrero A., Flores E. Analysis of expression of the argC and argD genes in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol. 1994 Oct;176(20):6397–6401. doi: 10.1128/jb.176.20.6397-6401.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haas D., Holloway B. W., Schamböck A., Leisinger T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet. 1977 Jul 7;154(1):7–22. doi: 10.1007/BF00265571. [DOI] [PubMed] [Google Scholar]
- Hindle Z., Callis R., Dowden S., Rudd B. A., Baumberg S. Cloning and expression in Escherichia coli of a Streptomyces coelicolor A3(2) argCJB gene cluster. Microbiology. 1994 Feb;140(Pt 2):311–320. doi: 10.1099/13500872-140-2-311. [DOI] [PubMed] [Google Scholar]
- Hutson J. Y., Downing M. Pyrimidine biosynthesis in Lactobacillus leichmannii. J Bacteriol. 1968 Oct;96(4):1249–1254. doi: 10.1128/jb.96.4.1249-1254.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LeBlanc D. J., Lee L. N., Abu-Al-Jaibat A. Molecular, genetic, and functional analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal origin. Plasmid. 1992 Sep;28(2):130–145. doi: 10.1016/0147-619x(92)90044-b. [DOI] [PubMed] [Google Scholar]
- LeBlanc D. J., Lee L. N., Inamine J. M. Cloning and nucleotide base sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrob Agents Chemother. 1991 Sep;35(9):1804–1810. doi: 10.1128/aac.35.9.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S., Pritchard G. G., Hardman M. J., Pilone G. J. Occurrence of arginine deiminase pathway enzymes in arginine catabolism by wine lactic Acid bacteria. Appl Environ Microbiol. 1995 Jan;61(1):310–316. doi: 10.1128/aem.61.1.310-316.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludovice M., Martin J. F., Carrachas P., Liras P. Characterization of the Streptomyces clavuligerus argC gene encoding N-acetylglutamyl-phosphate reductase: expression in Streptomyces lividans and effect on clavulanic acid production. J Bacteriol. 1992 Jul;174(14):4606–4613. doi: 10.1128/jb.174.14.4606-4613.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maas W. K. The arginine repressor of Escherichia coli. Microbiol Rev. 1994 Dec;58(4):631–640. doi: 10.1128/mr.58.4.631-640.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin P. R., Cooperider J. W., Mulks M. H. Sequence of the argF gene encoding ornithine transcarbamoylase from Neisseria gonorrhoeae. Gene. 1990 Sep 28;94(1):139–140. doi: 10.1016/0378-1119(90)90482-7. [DOI] [PubMed] [Google Scholar]
- Martin P. R., Mulks M. H. Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae. J Bacteriol. 1992 Apr;174(8):2694–2701. doi: 10.1128/jb.174.8.2694-2701.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mountain A., Mann N. H., Munton R. N., Baumberg S. Cloning of a Bacillus subtilis restriction fragment complementing auxotrophic mutants of eight Escherichia coli genes of arginine biosynthesis. Mol Gen Genet. 1984;197(1):82–89. doi: 10.1007/BF00327926. [DOI] [PubMed] [Google Scholar]
- Niaudet B., Ehrlich S. D. In vitro genetic labeling of Bacillus subtilis cryptic plasmid pHV400. Plasmid. 1979 Jan;2(1):48–58. doi: 10.1016/0147-619x(79)90005-2. [DOI] [PubMed] [Google Scholar]
- Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
- O'Reilly M., Devine K. M. Sequence and analysis of the citrulline biosynthetic operon argC-F from Bacillus subtilis. Microbiology. 1994 May;140(Pt 5):1023–1025. doi: 10.1099/13500872-140-5-1023. [DOI] [PubMed] [Google Scholar]
- Paulus T. J., Switzer R. L. Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis. J Bacteriol. 1979 Jan;137(1):82–91. doi: 10.1128/jb.137.1.82-91.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Picard F. J., Dillon J. R. Cloning and organization of seven arginine biosynthesis genes from Neisseria gonorrhoeae. J Bacteriol. 1989 Mar;171(3):1644–1651. doi: 10.1128/jb.171.3.1644-1651.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pouwels P. H., Leer R. J. Genetics of lactobacilli: plasmids and gene expression. Antonie Van Leeuwenhoek. 1993;64(2):85–107. doi: 10.1007/BF00873020. [DOI] [PubMed] [Google Scholar]
- Rodríguez-García A., Martín J. F., Liras P. The argG gene of Streptomyces clavuligerus has low homology to unstable argG from other actinomycetes: effect of amplification on clavulanic acid biosynthesis. Gene. 1995 Dec 29;167(1-2):9–15. doi: 10.1016/0378-1119(95)00667-2. [DOI] [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- Sakanyan V., Charlier D., Legrain C., Kochikyan A., Mett I., Piérard A., Glansdorff N. Primary structure, partial purification and regulation of key enzymes of the acetyl cycle of arginine biosynthesis in Bacillus stearothermophilus: dual function of ornithine acetyltransferase. J Gen Microbiol. 1993 Mar;139(3):393–402. doi: 10.1099/00221287-139-3-393. [DOI] [PubMed] [Google Scholar]
- Sakanyan V., Petrosyan P., Lecocq M., Boyen A., Legrain C., Demarez M., Hallet J. N., Glansdorff N. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology. 1996 Jan;142(Pt 1):99–108. doi: 10.1099/13500872-142-1-99. [DOI] [PubMed] [Google Scholar]
- Simon D., Chopin A. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie. 1988 Apr;70(4):559–566. doi: 10.1016/0300-9084(88)90093-4. [DOI] [PubMed] [Google Scholar]
- Smith M. C., Czaplewski L., North A. K., Baumberg S., Stockley P. G. Sequences required for regulation of arginine biosynthesis promoters are conserved between Bacillus subtilis and Escherichia coli. Mol Microbiol. 1989 Jan;3(1):23–28. doi: 10.1111/j.1365-2958.1989.tb00099.x. [DOI] [PubMed] [Google Scholar]
- Smith M. C., Mountain A., Baumberg S. Cloning in Escherichia coli of a Bacillus subtilis arginine repressor gene through its ability to confer structural stability on a fragment carrying genes of arginine biosynthesis. Mol Gen Genet. 1986 Oct;205(1):176–182. doi: 10.1007/BF02428049. [DOI] [PubMed] [Google Scholar]
- Soutar A., Baumberg S. Implication of a repression system, homologous to those of other bacteria, in the control of arginine biosynthesis genes in Streptomyces coelicolor. Mol Gen Genet. 1996 May 23;251(2):245–251. doi: 10.1007/BF02172924. [DOI] [PubMed] [Google Scholar]
- Tanaka T. Restriction of plasmid-mediated transformation in Bacillus subtilis 168. Mol Gen Genet. 1979 Sep;175(2):235–237. doi: 10.1007/BF00425542. [DOI] [PubMed] [Google Scholar]
- Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
- Udaka S. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol. 1966 Feb;91(2):617–621. doi: 10.1128/jb.91.2.617-621.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanderslice P., Copeland W. C., Robertus J. D. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. J Biol Chem. 1986 Nov 15;261(32):15186–15191. [PubMed] [Google Scholar]
- van de Guchte M., van der Vossen J. M., Kok J., Venema G. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1989 Jan;55(1):224–228. doi: 10.1128/aem.55.1.224-228.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]