Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Apr;179(8):2788–2791. doi: 10.1128/jb.179.8.2788-2791.1997

Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive.

A M Muro-Pastor 1, P Ostrovsky 1, S Maloy 1
PMCID: PMC179035  PMID: 9098084

Abstract

The PutA protein from Salmonella typhimurium is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate, a reaction that is coupled to the transfer of electrons to the electron transport chain in the cytoplasmic membrane. The PutA protein is also a transcriptional repressor that regulates the expression of the put operon in response to the availability of proline. Despite extensive genetic and biochemical studies of the PutA protein, it was not known if the PutA protein carries out both of these two opposing functions while membrane associated or if instead it carries them out in different cellular compartments. To distinguish between these alternatives, we directly assayed the binding of purified PutA protein to DNA and membranes in vitro. The results indicate that wild-type PutA does not simultaneously associate with DNA and membranes. In addition, PutA superrepressor mutants that exhibit increased repression of the put genes show a direct correlation between decreased membrane binding and increased DNA binding. These results support a model in which the PutA protein shuttles between the membrane (where it acts as an enzyme but lacks access to DNA-binding sites) and the cytoplasm (where it binds DNA and acts as a transcriptional repressor), depending on the availability of proline.

Full Text

The Full Text of this article is available as a PDF (578.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson J. L., Baker L. G., Stephenson J. T., Wood J. M. Proline dehydrogenase from Escherichia coli K12. Properties of the membrane-associated enzyme. Eur J Biochem. 1983 Jul 15;134(1):77–82. doi: 10.1111/j.1432-1033.1983.tb07533.x. [DOI] [PubMed] [Google Scholar]
  2. Brown E. D., Wood J. M. Conformational change and membrane association of the PutA protein are coincident with reduction of its FAD cofactor by proline. J Biol Chem. 1993 Apr 25;268(12):8972–8979. [PubMed] [Google Scholar]
  3. Brown E. D., Wood J. M. Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli. J Biol Chem. 1992 Jun 25;267(18):13086–13092. [PubMed] [Google Scholar]
  4. Carey J. Gel retardation. Methods Enzymol. 1991;208:103–117. doi: 10.1016/0076-6879(91)08010-f. [DOI] [PubMed] [Google Scholar]
  5. Dendinger S., Brill W. J. Regulation of proline degradation in Salmonella typhimurium. J Bacteriol. 1970 Jul;103(1):144–152. doi: 10.1128/jb.103.1.144-152.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Graham S. B., Stephenson J. T., Wood J. M. Proline dehydrogenase from Escherichia coli K12. Reconstitution of a functional membrane association. J Biol Chem. 1984 Feb 25;259(4):2656–2661. [PubMed] [Google Scholar]
  7. Hahn D. R., Myers R. S., Kent C. R., Maloy S. R. Regulation of proline utilization in Salmonella typhimurium: molecular characterization of the put operon, and DNA sequence of the put control region. Mol Gen Genet. 1988 Jul;213(1):125–133. doi: 10.1007/BF00333408. [DOI] [PubMed] [Google Scholar]
  8. Maloy S. R., Roth J. R. Regulation of proline utilization in Salmonella typhimurium: characterization of put::Mu d(Ap, lac) operon fusions. J Bacteriol. 1983 May;154(2):561–568. doi: 10.1128/jb.154.2.561-568.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maloy S., Stewart V. Autogenous regulation of gene expression. J Bacteriol. 1993 Jan;175(2):307–316. doi: 10.1128/jb.175.2.307-316.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Menzel R., Roth J. Enzymatic properties of the purified putA protein from Salmonella typhimurium. J Biol Chem. 1981 Sep 25;256(18):9762–9766. [PubMed] [Google Scholar]
  11. Miller V. L., Taylor R. K., Mekalanos J. J. Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell. 1987 Jan 30;48(2):271–279. doi: 10.1016/0092-8674(87)90430-2. [DOI] [PubMed] [Google Scholar]
  12. Muro-Pastor A. M., Maloy S. Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline. J Biol Chem. 1995 Apr 28;270(17):9819–9827. doi: 10.1074/jbc.270.17.9819. [DOI] [PubMed] [Google Scholar]
  13. Ostrovsky de Spicer P., Maloy S. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4295–4298. doi: 10.1073/pnas.90.9.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ostrovsky de Spicer P., O'Brien K., Maloy S. Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro. J Bacteriol. 1991 Jan;173(1):211–219. doi: 10.1128/jb.173.1.211-219.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  16. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  17. Wood J. M. Membrane association of proline dehydrogenase in Escherichia coli is redox dependent. Proc Natl Acad Sci U S A. 1987 Jan;84(2):373–377. doi: 10.1073/pnas.84.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES