Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson A. I., Wu D., Zhang C. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J Bacteriol. 1995 Jul;177(14):4059–4065. doi: 10.1128/jb.177.14.4059-4065.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baron M., Norman D. G., Campbell I. D. Protein modules. Trends Biochem Sci. 1991 Jan;16(1):13–17. doi: 10.1016/0968-0004(91)90009-k. [DOI] [PubMed] [Google Scholar]
- Bennett M. J., Choe S., Eisenberg D. Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3127–3131. doi: 10.1073/pnas.91.8.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosch D., Schipper B., van der Kleij H., de Maagd R. A., Stiekema W. J. Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnology (N Y) 1994 Sep;12(9):915–918. doi: 10.1038/nbt0994-915. [DOI] [PubMed] [Google Scholar]
- Bradley D., Harkey M. A., Kim M. K., Biever K. D., Bauer L. S. The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J Invertebr Pathol. 1995 Mar;65(2):162–173. doi: 10.1006/jipa.1995.1024. [DOI] [PubMed] [Google Scholar]
- Chen X. J., Lee M. K., Dean D. H. Site-directed mutations in a highly conserved region of Bacillus thuringiensis delta-endotoxin affect inhibition of short circuit current across Bombyx mori midguts. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9041–9045. doi: 10.1073/pnas.90.19.9041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choma C. T., Kaplan H. Bacillus thuringiensis crystal protein: effect of chemical modification of the cysteine and lysine residues. J Invertebr Pathol. 1992 Jan;59(1):75–80. doi: 10.1016/0022-2011(92)90114-j. [DOI] [PubMed] [Google Scholar]
- Cummings C. E., Armstrong G., Hodgman T. C., Ellar D. J. Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis delta-endotoxin. Mol Membr Biol. 1994 Apr-Jun;11(2):87–92. doi: 10.3109/09687689409162225. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
- Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
- Gazit E., Bach D., Kerr I. D., Sansom M. S., Chejanovsky N., Shai Y. The alpha-5 segment of Bacillus thuringiensis delta-endotoxin: in vitro activity, ion channel formation and molecular modelling. Biochem J. 1994 Dec 15;304(Pt 3):895–902. doi: 10.1042/bj3040895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ge A. Z., Rivers D., Milne R., Dean D. H. Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). J Biol Chem. 1991 Sep 25;266(27):17954–17958. [PubMed] [Google Scholar]
- Gill S. S., Cowles E. A., Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem. 1995 Nov 10;270(45):27277–27282. doi: 10.1074/jbc.270.45.27277. [DOI] [PubMed] [Google Scholar]
- Grochulski P., Masson L., Borisova S., Pusztai-Carey M., Schwartz J. L., Brousseau R., Cygler M. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol. 1995 Dec 1;254(3):447–464. doi: 10.1006/jmbi.1995.0630. [DOI] [PubMed] [Google Scholar]
- Hofmann C., Lüthy P., Hütter R., Pliska V. Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur J Biochem. 1988 Apr 5;173(1):85–91. doi: 10.1111/j.1432-1033.1988.tb13970.x. [DOI] [PubMed] [Google Scholar]
- Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kido S., Doi Y., Kim F., Morishita E., Narita H., Kanaya S., Ohkubo T., Nishikawa K., Yao T., Ooi T. Characterization of vitelline membrane outer layer protein I, VMO-I: amino acid sequence and structural stability. J Biochem. 1995 Jun;117(6):1183–1191. doi: 10.1093/oxfordjournals.jbchem.a124842. [DOI] [PubMed] [Google Scholar]
- Knight P. J., Crickmore N., Ellar D. J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol. 1994 Feb;11(3):429–436. doi: 10.1111/j.1365-2958.1994.tb00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knowles B. H., Knight P. J., Ellar D. J. N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis. Proc Biol Sci. 1991 Jul 22;245(1312):31–35. doi: 10.1098/rspb.1991.0084. [DOI] [PubMed] [Google Scholar]
- Koller C. N., Bauer L. S., Hollingworth R. M. Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native delta-endotoxin crystals. Biochem Biophys Res Commun. 1992 Apr 30;184(2):692–699. doi: 10.1016/0006-291x(92)90645-2. [DOI] [PubMed] [Google Scholar]
- Lee M. K., Young B. A., Dean D. H. Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Biochem Biophys Res Commun. 1995 Nov 2;216(1):306–312. doi: 10.1006/bbrc.1995.2625. [DOI] [PubMed] [Google Scholar]
- Li J. D., Carroll J., Ellar D. J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature. 1991 Oct 31;353(6347):815–821. doi: 10.1038/353815a0. [DOI] [PubMed] [Google Scholar]
- Liang Y., Patel S. S., Dean D. H. Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J Biol Chem. 1995 Oct 20;270(42):24719–24724. doi: 10.1074/jbc.270.42.24719. [DOI] [PubMed] [Google Scholar]
- Lorence A., Darszon A., Díaz C., Liévano A., Quintero R., Bravo A. Delta-endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers. FEBS Lett. 1995 Mar 6;360(3):217–222. doi: 10.1016/0014-5793(95)00092-n. [DOI] [PubMed] [Google Scholar]
- Lu H., Rajamohan F., Dean D. H. Identification of amino acid residues of Bacillus thuringiensis delta-endotoxin CryIAa associated with membrane binding and toxicity to Bombyx mori. J Bacteriol. 1994 Sep;176(17):5554–5559. doi: 10.1128/jb.176.17.5554-5559.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morett E., Segovia L. The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol. 1993 Oct;175(19):6067–6074. doi: 10.1128/jb.175.19.6067-6074.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
- Nishimoto T., Yoshisue H., Ihara K., Sakai H., Komano T. Functional analysis of block 5, one of the highly conserved amino acid sequences in the 130-kDa CryIVA protein produced by Bacillus thuringiensis subsp. israelensis. FEBS Lett. 1994 Jul 18;348(3):249–254. doi: 10.1016/0014-5793(94)00604-0. [DOI] [PubMed] [Google Scholar]
- Rajamohan F., Cotrill J. A., Gould F., Dean D. H. Role of domain II, loop 2 residues of Bacillus thuringiensis CryIAb delta-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens. J Biol Chem. 1996 Feb 2;271(5):2390–2396. doi: 10.1074/jbc.271.5.2390. [DOI] [PubMed] [Google Scholar]
- Sangadala S., Walters F. S., English L. H., Adang M. J. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. J Biol Chem. 1994 Apr 1;269(13):10088–10092. [PubMed] [Google Scholar]
- Schnepf H. E., Tomczak K., Ortega J. P., Whiteley H. R. Specificity-determining regions of a lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis. J Biol Chem. 1990 Dec 5;265(34):20923–20930. [PubMed] [Google Scholar]
- Shimizu T., Morikawa K. The beta-prism: a new folding motif. Trends Biochem Sci. 1996 Jan;21(1):3–6. [PubMed] [Google Scholar]
- Smith G. P., Ellar D. J. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryIC delta-endotoxin affects insecticidal specificity. Biochem J. 1994 Sep 1;302(Pt 2):611–616. doi: 10.1042/bj3020611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tailor R., Tippett J., Gibb G., Pells S., Pike D., Jordan L., Ely S. Identification and characterization of a novel Bacillus thuringiensis delta-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol Microbiol. 1992 May;6(9):1211–1217. doi: 10.1111/j.1365-2958.1992.tb01560.x. [DOI] [PubMed] [Google Scholar]
- Thompson M. A., Schnepf H. E., Feitelson J. S. Structure, function and engineering of Bacillus thuringiensis toxins. Genet Eng (N Y) 1995;17:99–117. [PubMed] [Google Scholar]
- Vadlamudi R. K., Weber E., Ji I., Ji T. H., Bulla L. A., Jr Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem. 1995 Mar 10;270(10):5490–5494. doi: 10.1074/jbc.270.10.5490. [DOI] [PubMed] [Google Scholar]
- Valaitis A. P., Lee M. K., Rajamohan F., Dean D. H. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) delta-endotoxin of Bacillus thuringiensis. Insect Biochem Mol Biol. 1995 Dec;25(10):1143–1151. doi: 10.1016/0965-1748(95)00050-x. [DOI] [PubMed] [Google Scholar]
- Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol. 1990 May;56(5):1378–1385. doi: 10.1128/aem.56.5.1378-1385.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Tersch M. A., Slatin S. L., Kulesza C. A., English L. H. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl Environ Microbiol. 1994 Oct;60(10):3711–3717. doi: 10.1128/aem.60.10.3711-3717.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walters F. S., Slatin S. L., Kulesza C. A., English L. H. Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin. Biochem Biophys Res Commun. 1993 Oct 29;196(2):921–926. doi: 10.1006/bbrc.1993.2337. [DOI] [PubMed] [Google Scholar]
- Wu D., Aronson A. I. Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J Biol Chem. 1992 Feb 5;267(4):2311–2317. [PubMed] [Google Scholar]
- Wu S. J., Dean D. H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA delta-endotoxin. J Mol Biol. 1996 Feb 2;255(4):628–640. doi: 10.1006/jmbi.1996.0052. [DOI] [PubMed] [Google Scholar]