Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(9):2817–2822. doi: 10.1128/jb.179.9.2817-2822.1997

Cnr protein, the negative regulator of bacteriophage P4 replication, stimulates specific DNA binding of its initiator protein alpha.

G Ziegelin 1, R Calendar 1, D Ghisotti 1, S Terzano 1, E Lanka 1
PMCID: PMC179040  PMID: 9139894

Abstract

Bacteriophage P4 DNA replication depends upon the phage-encoded alpha protein, which has DNA helicase and DNA primase activity and can specifically bind to the replication origin (ori) and to the cis replicating region (crr). The P4 Cnr protein functions as a negative regulator of P4 replication, and P4 does not replicate in cells that overexpress cnr. We searched for P4 mutants that suppressed this phenotype (Cnr resistant [alpha cr]). Eight independent mutants that grew in the presence of high levels of Cnr were obtained. None of these can establish the plasmid state. Each of these mutations lies in the DNA binding domain of gp alpha that occupies the C terminus of the protein. Five different sequence changes were found: T675M, G732V (three times), G732W (twice), L733V, and L737V. A TrxA-Cnr fusion protein does not bind DNA by itself but stimulates the ori and crr binding abilities of alpha protein in vitro. The alpha cr mutant proteins were still able to bind specifically to ori or crr, but specific DNA binding was less stimulated by the TrxA-Cnr protein. We present evidence that Cnr protein interacts with the gp alpha domain that binds specifically to DNA and that gp(alpha)cr mutations impair this interaction. We hypothesize that gp alpha-Cnr interaction is essential for the control of P4 DNA replication.

Full Text

The Full Text of this article is available as a PDF (441.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alano P., Dehò G., Sironi G., Zangrossi S. Regulation of the plasmid state of the genetic element P4. Mol Gen Genet. 1986 Jun;203(3):445–450. doi: 10.1007/BF00422069. [DOI] [PubMed] [Google Scholar]
  2. Balzer D., Ziegelin G., Pansegrau W., Kruft V., Lanka E. KorB protein of promiscuous plasmid RP4 recognizes inverted sequence repetitions in regions essential for conjugative plasmid transfer. Nucleic Acids Res. 1992 Apr 25;20(8):1851–1858. doi: 10.1093/nar/20.8.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cesareni G., Helmer-Citterich M., Castagnoli L. Control of ColE1 plasmid replication by antisense RNA. Trends Genet. 1991 Jul;7(7):230–235. doi: 10.1016/0168-9525(91)90370-6. [DOI] [PubMed] [Google Scholar]
  4. Dehò G., Ghisotti D., Alano P., Zangrossi S., Borrello M. G., Sironi G. Plasmid mode of propagation of the genetic element P4. J Mol Biol. 1984 Sep 15;178(2):191–207. doi: 10.1016/0022-2836(84)90139-6. [DOI] [PubMed] [Google Scholar]
  5. Díaz Orejas R., Ziegelin G., Lurz R., Lanka E. Phage P4 DNA replication in vitro. Nucleic Acids Res. 1994 Jun 11;22(11):2065–2070. doi: 10.1093/nar/22.11.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  7. Flensburg J., Calendar R. Bacteriophage P4 DNA replication. Nucleotide sequence of the P4 replication gene and the cis replication region. J Mol Biol. 1987 May 20;195(2):439–445. doi: 10.1016/0022-2836(87)90664-4. [DOI] [PubMed] [Google Scholar]
  8. Goldstein R., Sedivy J., Ljungquist E. Propagation of satellite phage P4 as a plasmid. Proc Natl Acad Sci U S A. 1982 Jan;79(2):515–519. doi: 10.1073/pnas.79.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Halling C., Calendar R., Christie G. E., Dale E. C., Dehò G., Finkel S., Flensburg J., Ghisotti D., Kahn M. L., Lane K. B. DNA sequence of satellite bacteriophage P4. Nucleic Acids Res. 1990 Mar 25;18(6):1649–1649. doi: 10.1093/nar/18.6.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  11. Kahn M. L., Ziermann R., Dehò G., Ow D. W., Sunshine M. G., Calendar R. Bacteriophage P2 and P4. Methods Enzymol. 1991;204:264–280. doi: 10.1016/0076-6879(91)04013-e. [DOI] [PubMed] [Google Scholar]
  12. Krevolin M. D., Inman R. B., Roof D., Kahn M., Calendar R. Bacteriophage P4 DNA replication. Location of the P4 origin. J Mol Biol. 1985 Apr 20;182(4):519–527. doi: 10.1016/0022-2836(85)90238-4. [DOI] [PubMed] [Google Scholar]
  13. LaVallie E. R., DiBlasio E. A., Kovacic S., Grant K. L., Schendel P. F., McCoy J. M. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 1993 Feb;11(2):187–193. doi: 10.1038/nbt0293-187. [DOI] [PubMed] [Google Scholar]
  14. Lessl M., Balzer D., Lurz R., Waters V. L., Guiney D. G., Lanka E. Dissection of IncP conjugative plasmid transfer: definition of the transfer region Tra2 by mobilization of the Tra1 region in trans. J Bacteriol. 1992 Apr;174(8):2493–2500. doi: 10.1128/jb.174.8.2493-2500.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lindqvist B. H., Dehò G., Calendar R. Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol Rev. 1993 Sep;57(3):683–702. doi: 10.1128/mr.57.3.683-702.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindqvist B. H., Six E. W. Replication of bacteriophage P4 DNA in a nonlysogenic host. Virology. 1971 Jan;43(1):1–7. doi: 10.1016/0042-6822(71)90218-2. [DOI] [PubMed] [Google Scholar]
  17. Ow D. W., Ausubel F. M. Recombinant P4 bacteriophages propagate as viable lytic phages or as autonomous plasmids in Klebsiella pneumoniae. Mol Gen Genet. 1980;180(1):165–175. doi: 10.1007/BF00267366. [DOI] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sasaki I., Bertani G. Growth abnormalities in Hfr derivatives of Escherichia coli strain C. J Gen Microbiol. 1965 Sep;40(3):365–376. doi: 10.1099/00221287-40-3-365. [DOI] [PubMed] [Google Scholar]
  20. Six E. W., Klug C. A. Bacteriophage P4: a satellite virus depending on a helper such as prophage P2. Virology. 1973 Feb;51(2):327–344. doi: 10.1016/0042-6822(73)90432-7. [DOI] [PubMed] [Google Scholar]
  21. Strack B., Lessl M., Calendar R., Lanka E. A common sequence motif, -E-G-Y-A-T-A-, identified within the primase domains of plasmid-encoded I- and P-type DNA primases and the alpha protein of the Escherichia coli satellite phage P4. J Biol Chem. 1992 Jun 25;267(18):13062–13072. [PubMed] [Google Scholar]
  22. Terzano S., Christian R., Espinoza F. H., Calendar R., Dehò G., Ghisotti D. A new gene of bacteriophage P4 that controls DNA replication. J Bacteriol. 1994 Oct;176(19):6059–6065. doi: 10.1128/jb.176.19.6059-6065.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ziegelin G., Lanka E. Bacteriophage P4 DNA replication. FEMS Microbiol Rev. 1995 Aug;17(1-2):99–107. doi: 10.1111/j.1574-6976.1995.tb00191.x. [DOI] [PubMed] [Google Scholar]
  24. Ziegelin G., Linderoth N. A., Calendar R., Lanka E. Domain structure of phage P4 alpha protein deduced by mutational analysis. J Bacteriol. 1995 Aug;177(15):4333–4341. doi: 10.1128/jb.177.15.4333-4341.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ziegelin G., Scherzinger E., Lurz R., Lanka E. Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities. EMBO J. 1993 Sep;12(9):3703–3708. doi: 10.1002/j.1460-2075.1993.tb06045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES