Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(9):2872–2878. doi: 10.1128/jb.179.9.2872-2878.1997

Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli.

K Inoue 1, H Matsuzaki 1, K Matsumoto 1, I Shibuya 1
PMCID: PMC179048  PMID: 9139902

Abstract

The amount of porin protein OmpF in the outer membrane of Escherichia coli was reduced to one-third by the pgsA3 mutation that diminishes the amount of phosphatidylglycerol and cardiolipin in the membrane, whereas a cls (cardiolipin synthase) null mutation had no effect. Osmoregulation of OmpF was functional in the pgsA3 mutant. As assessed by the beta-galactosidase activities of lacZ fusions, the ompF expression was not reduced at the transcriptional level but was reduced about threefold at the posttranscriptional level by pgsA3. This reduction was mostly restored by a micF null mutation, and the micF RNA that inhibits the ompF mRNA translation was present 1.3 to 1.4 times more in the pgsA3 mutant, as assayed by RNase protection and Northern blot analyses. Elevation of the level of micF RNA was not restricted to acidic-phospholipid deficiency: OmpF was hardly detected and micF RNA was present 2.7 to 2.8 times more in a pssA null mutant that lacked phosphatidylethanolamine. Other common phenotypes of pgsA3 and pssA null mutants, reduced rates of cell growth and phospholipid synthesis, were not the cause of micF activation. Salicylate, which activates micF expression and inhibits cell motility, did not repress the flagellar master operon. These results imply that an unbalanced phospholipid composition, rather than a decrease or increase in the amount of specific phospholipid species, induces a phospholipid-specific stress signal to which certain regulatory genes respond positively or negatively according to their intrinsic mechanisms.

Full Text

The Full Text of this article is available as a PDF (221.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba H., Matsuyama S., Mizuno T., Mizushima S. Function of micF as an antisense RNA in osmoregulatory expression of the ompF gene in Escherichia coli. J Bacteriol. 1987 Jul;169(7):3007–3012. doi: 10.1128/jb.169.7.3007-3012.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen J., Delihas N. micF RNA binds to the 5' end of ompF mRNA and to a protein from Escherichia coli. Biochemistry. 1990 Oct 2;29(39):9249–9256. doi: 10.1021/bi00491a020. [DOI] [PubMed] [Google Scholar]
  4. Andersen J., Forst S. A., Zhao K., Inouye M., Delihas N. The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem. 1989 Oct 25;264(30):17961–17970. [PubMed] [Google Scholar]
  5. Aoki H., Yaworsky P. J., Patel S. D., Margolin-Brzezinski D., Park K. S., Ganoza M. C. The asparaginyl-tRNA synthetase gene encodes one of the complementing factors for thermosensitive translation in the Escherichia coli mutant strain, N4316. Eur J Biochem. 1992 Oct 15;209(2):511–521. doi: 10.1111/j.1432-1033.1992.tb17315.x. [DOI] [PubMed] [Google Scholar]
  6. Asai Y., Katayose Y., Hikita C., Ohta A., Shibuya I. Suppression of the lethal effect of acidic-phospholipid deficiency by defective formation of the major outer membrane lipoprotein in Escherichia coli. J Bacteriol. 1989 Dec;171(12):6867–6869. doi: 10.1128/jb.171.12.6867-6869.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  8. Bartlett D. H., Frantz B. B., Matsumura P. Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5' consensus sequences of operons under FlbB and FlaI control. J Bacteriol. 1988 Apr;170(4):1575–1581. doi: 10.1128/jb.170.4.1575-1581.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chou J. H., Greenberg J. T., Demple B. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol. 1993 Feb;175(4):1026–1031. doi: 10.1128/jb.175.4.1026-1031.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coyer J., Andersen J., Forst S. A., Inouye M., Delihas N. micF RNA in ompB mutants of Escherichia coli: different pathways regulate micF RNA levels in response to osmolarity and temperature change. J Bacteriol. 1990 Aug;172(8):4143–4150. doi: 10.1128/jb.172.8.4143-4150.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
  12. DeChavigny A., Heacock P. N., Dowhan W. Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem. 1991 Mar 15;266(8):5323–5332. [PubMed] [Google Scholar]
  13. Delihas N. Regulation of gene expression by trans-encoded antisense RNAs. Mol Microbiol. 1995 Feb;15(3):411–414. doi: 10.1111/j.1365-2958.1995.tb02254.x. [DOI] [PubMed] [Google Scholar]
  14. Farr S. B., Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1991 Dec;55(4):561–585. doi: 10.1128/mr.55.4.561-585.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ferrario M., Ernsting B. R., Borst D. W., Wiese D. E., 2nd, Blumenthal R. M., Matthews R. G. The leucine-responsive regulatory protein of Escherichia coli negatively regulates transcription of ompC and micF and positively regulates translation of ompF. J Bacteriol. 1995 Jan;177(1):103–113. doi: 10.1128/jb.177.1.103-113.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Forst S. A., Roberts D. L. Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Res Microbiol. 1994 Jun-Aug;145(5-6):363–373. doi: 10.1016/0923-2508(94)90083-3. [DOI] [PubMed] [Google Scholar]
  17. Gallagher M., Weinberg R., Simpson M. V. Effect of the bacterial DNA gyrase inhibitors, novobiocin, nalidixic acid, and oxolinic acid, on oxidative phosphorylation. J Biol Chem. 1986 Jul 5;261(19):8604–8607. [PubMed] [Google Scholar]
  18. Ganong B. R., Raetz C. R. Massive accumulation of phosphatidic acid in conditionally lethal CDP-diglyceride synthetase mutants and cytidine auxotrophs of Escherichia coli. J Biol Chem. 1982 Jan 10;257(1):389–394. [PubMed] [Google Scholar]
  19. Hawrot E., Kennedy E. P. Phospholipid composition and membrane function in phosphatidylserine decarboxylase mutants of Escherichia coli. J Biol Chem. 1978 Nov 25;253(22):8213–8220. [PubMed] [Google Scholar]
  20. Heller K., Mann B. J., Kadner R. J. Cloning and expression of the gene for the vitamin B12 receptor protein in the outer membrane of Escherichia coli. J Bacteriol. 1985 Mar;161(3):896–903. doi: 10.1128/jb.161.3.896-903.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kawaji H., Mizuno T., Mizushima S. Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins O-8 and O-9 of Escherichia coli K-12. J Bacteriol. 1979 Dec;140(3):843–847. doi: 10.1128/jb.140.3.843-847.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kitamura E., Nakayama Y., Matsuzaki H., Matsumoto K., Shibuya I. Acidic-phospholipid deficiency represses the flagellar master operon through a novel regulatory region in Escherichia coli. Biosci Biotechnol Biochem. 1994 Dec;58(12):2305–2307. doi: 10.1271/bbb.58.2305. [DOI] [PubMed] [Google Scholar]
  23. Komeda Y. Fusions of flagellar operons to lactose genes on a mu lac bacteriophage. J Bacteriol. 1982 Apr;150(1):16–26. doi: 10.1128/jb.150.1.16-26.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kunin C. M., Hua T. H., Bakaletz L. O. Effect of salicylate on expression of flagella by Escherichia coli and Proteus, Providencia, and Pseudomonas spp. Infect Immun. 1995 May;63(5):1796–1799. doi: 10.1128/iai.63.5.1796-1799.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Li C., Louise C. J., Shi W., Adler J. Adverse conditions which cause lack of flagella in Escherichia coli. J Bacteriol. 1993 Apr;175(8):2229–2235. doi: 10.1128/jb.175.8.2229-2235.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lindskov J., Ranek L., Tygstrup N., Winkler K. Splanchnic galactose uptake in patients with cirrhosis during continuous infusion. Clin Physiol. 1983 Apr;3(2):179–185. doi: 10.1111/j.1475-097x.1983.tb00689.x. [DOI] [PubMed] [Google Scholar]
  27. Macnab R. M. Genetics and biogenesis of bacterial flagella. Annu Rev Genet. 1992;26:131–158. doi: 10.1146/annurev.ge.26.120192.001023. [DOI] [PubMed] [Google Scholar]
  28. Matsuyama S., Mizushima S. Construction and characterization of a deletion mutant lacking micF, a proposed regulatory gene for OmpF synthesis in Escherichia coli. J Bacteriol. 1985 Jun;162(3):1196–1202. doi: 10.1128/jb.162.3.1196-1202.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller J. H., Ganem D., Lu P., Schmitz A. Genetic studies of the lac repressor. I. Correlation of mutational sites with specific amino acid residues: construction of a colinear gene-protein map. J Mol Biol. 1977 Jan 15;109(2):275–298. doi: 10.1016/s0022-2836(77)80034-x. [DOI] [PubMed] [Google Scholar]
  30. Miyazaki C., Kuroda M., Ohta A., Shibuya I. Genetic manipulation of membrane phospholipid composition in Escherichia coli: pgsA mutants defective in phosphatidylglycerol synthesis. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7530–7534. doi: 10.1073/pnas.82.22.7530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mizuno T., Mizushima S. Isolation and characterization of deletion mutants of ompR and envZ, regulatory genes for expression of the outer membrane proteins OmpC and OmpF in Escherichia coli. J Biochem. 1987 Feb;101(2):387–396. doi: 10.1093/oxfordjournals.jbchem.a121923. [DOI] [PubMed] [Google Scholar]
  32. Mizushima T., Koyanagi R., Suzuki E., Tomura A., Kutsukake K., Miki T., Sekimizu K. Control by phosphatidylglycerol of expression of the flhD gene in Escherichia coli. Biochim Biophys Acta. 1995 Dec 14;1245(3):397–401. doi: 10.1016/0304-4165(95)00114-x. [DOI] [PubMed] [Google Scholar]
  33. Nishijima S., Asami Y., Uetake N., Yamagoe S., Ohta A., Shibuya I. Disruption of the Escherichia coli cls gene responsible for cardiolipin synthesis. J Bacteriol. 1988 Feb;170(2):775–780. doi: 10.1128/jb.170.2.775-780.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Norioka S., Ramakrishnan G., Ikenaka K., Inouye M. Interaction of a transcriptional activator, OmpR, with reciprocally osmoregulated genes, ompF and ompC, of Escherichia coli. J Biol Chem. 1986 Dec 25;261(36):17113–17119. [PubMed] [Google Scholar]
  35. Papahadjopoulos D. Studies on the mechanism of action of local anesthetics with phospholipid model membranes. Biochim Biophys Acta. 1972 Apr 18;265(2):169–186. doi: 10.1016/0304-4157(72)90001-9. [DOI] [PubMed] [Google Scholar]
  36. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  37. Pratt L. A., Hsing W., Gibson K. E., Silhavy T. J. From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol Microbiol. 1996 Jun;20(5):911–917. doi: 10.1111/j.1365-2958.1996.tb02532.x. [DOI] [PubMed] [Google Scholar]
  38. Pugsley A. P., Schnaitman C. A. Identification of three genes controlling production of new outer membrane pore proteins in Escherichia coli K-12. J Bacteriol. 1978 Sep;135(3):1118–1129. doi: 10.1128/jb.135.3.1118-1129.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rampersaud A., Inouye M. Procaine, a local anesthetic, signals through the EnvZ receptor to change the DNA binding affinity of the transcriptional activator protein OmpR. J Bacteriol. 1991 Nov;173(21):6882–6888. doi: 10.1128/jb.173.21.6882-6888.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rosner J. L., Chai T. J., Foulds J. Regulation of ompF porin expression by salicylate in Escherichia coli. J Bacteriol. 1991 Sep;173(18):5631–5638. doi: 10.1128/jb.173.18.5631-5638.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Saha S. K., Nishijima S., Matsuzaki H., Shibuya I., Matsumoto K. A regulatory mechanism for the balanced synthesis of membrane phospholipid species in Escherichia coli. Biosci Biotechnol Biochem. 1996 Jan;60(1):111–116. doi: 10.1271/bbb.60.111. [DOI] [PubMed] [Google Scholar]
  42. Schnaitman C. A., McDonald G. A. Regulation of outer membrane protein synthesis in Escherichia coli K-12: deletion of ompC affects expression of the OmpF protein. J Bacteriol. 1984 Aug;159(2):555–563. doi: 10.1128/jb.159.2.555-563.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shi W., Bogdanov M., Dowhan W., Zusman D. R. The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J Bacteriol. 1993 Dec;175(23):7711–7714. doi: 10.1128/jb.175.23.7711-7714.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shi W., Li C., Louise C. J., Adler J. Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J Bacteriol. 1993 Apr;175(8):2236–2240. doi: 10.1128/jb.175.8.2236-2240.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shibuya I. Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog Lipid Res. 1992;31(3):245–299. doi: 10.1016/0163-7827(92)90010-g. [DOI] [PubMed] [Google Scholar]
  46. Shibuya I., Miyazaki C., Ohta A. Alteration of phospholipid composition by combined defects in phosphatidylserine and cardiolipin synthases and physiological consequences in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1086–1092. doi: 10.1128/jb.161.3.1086-1092.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Shin S., Park C. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol. 1995 Aug;177(16):4696–4702. doi: 10.1128/jb.177.16.4696-4702.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Simons R. W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. doi: 10.1016/0378-1119(87)90095-3. [DOI] [PubMed] [Google Scholar]
  49. Tesfa-Selase F., Drabble W. T. Regulation of the gua operon of Escherichia coli by the DnaA protein. Mol Gen Genet. 1992 Jan;231(2):256–264. doi: 10.1007/BF00279799. [DOI] [PubMed] [Google Scholar]
  50. Tokishita S., Mizuno T. Transmembrane signal transduction by the Escherichia coli osmotic sensor, EnvZ: intermolecular complementation of transmembrane signalling. Mol Microbiol. 1994 Aug;13(3):435–444. doi: 10.1111/j.1365-2958.1994.tb00438.x. [DOI] [PubMed] [Google Scholar]
  51. Tomura A., Ishikawa T., Sagara Y., Miki T., Sekimizu K. Requirement of phosphatidylglycerol for flagellation of Escherichia coli. FEBS Lett. 1993 Aug 30;329(3):287–290. doi: 10.1016/0014-5793(93)80239-q. [DOI] [PubMed] [Google Scholar]
  52. Usui M., Sembongi H., Matsuzaki H., Matsumoto K., Shibuya I. Primary structures of the wild-type and mutant alleles encoding the phosphatidylglycerophosphate synthase of Escherichia coli. J Bacteriol. 1994 Jun;176(11):3389–3392. doi: 10.1128/jb.176.11.3389-3392.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES