Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(9):2930–2937. doi: 10.1128/jb.179.9.2930-2937.1997

Identification and characterization of the nifV-nifZ-nifT gene region from the filamentous cyanobacterium Anabaena sp. strain PCC 7120.

O Stricker 1, B Masepohl 1, W Klipp 1, H Böhme 1
PMCID: PMC179056  PMID: 9139910

Abstract

The nifV and leuA genes, which encode homocitrate synthase and alpha-isopropylmalate synthase, respectively, were cloned from the filamentous cyanobacterium Anabaena sp. strain PCC 7120 by a PCR-based strategy. Since the N-terminal parts of NifV and LeuA from other bacteria are highly similar to each other, a single pair of PCR primers was used to amplify internal fragments of both Anabaena strain 7120 genes. Sequence analysis of cloned PCR products confirmed the presence of two different nifV-like DNA fragments, which were subsequently used as nifV- and leuA-specific probes, respectively, to clone XbaI fragments of 2.1 kbp (pOST4) and 2.6 kbp (pOST2). Plasmid pOST4 carried the Anabaena strain 7120 nifV-nifZ-nifT genes, whereas pOST2 contained the leuA and dapF genes. The nifVZT genes were not located in close proximity to the main nif gene cluster in Anabaena strain 7120, and therefore nifVZT forms a second nif gene cluster in this strain. Overlaps between the nifV and nifZ genes and between the nifZ and nifT genes and the presence of a 1.8-kb transcript indicated that nifVZT might form one transcriptional unit. Transcripts of nifV were induced not only in a nitrogen-depleted culture but also by iron depletion irrespective of the nitrogen status. The nifV gene in Anabaena strain 7120 was interrupted by an interposon insertion (mutant strain BMB105) and by a plasmid integration via a single crossover with a nifV internal fragment as a site for recombination (mutant strain BMB106). Both mutant strains were capable of diazotrophic growth, and their growth rates were only slightly impaired compared to that of the wild type. Heterologous complementation of the Rhodobacter capsulatus nifV mutant R229I by the Anabaena strain 7120 nifV gene corroborated the assumption that Anabaena strain 7120 nifV also encodes a homocitrate synthase. In contrast, the Anabaena strain 7120 leuA gene did not complement the nifV mutation of R229I efficiently.

Full Text

The Full Text of this article is available as a PDF (540.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Arnold W., Rump A., Klipp W., Priefer U. B., Pühler A. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol. 1988 Oct 5;203(3):715–738. doi: 10.1016/0022-2836(88)90205-7. [DOI] [PubMed] [Google Scholar]
  3. Bauer C. C., Scappino L., Haselkorn R. Growth of the cyanobacterium Anabaena on molecular nitrogen: NifJ is required when iron is limited. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8812–8816. doi: 10.1073/pnas.90.19.8812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Böhme H., Haselkorn R. Molecular cloning and nucleotide sequence analysis of the gene coding for heterocyst ferredoxin from the cyanobacterium Anabaena sp. strain PCC 7120. Mol Gen Genet. 1988 Oct;214(2):278–285. doi: 10.1007/BF00337722. [DOI] [PubMed] [Google Scholar]
  5. Carrasco C. D., Ramaswamy K. S., Ramasubramanian T. S., Golden J. W. Anabaena xisF gene encodes a developmentally regulated site-specific recombinase. Genes Dev. 1994 Jan;8(1):74–83. doi: 10.1101/gad.8.1.74. [DOI] [PubMed] [Google Scholar]
  6. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  7. Elhai J., Wolk C. P. A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene. 1988 Aug 15;68(1):119–138. doi: 10.1016/0378-1119(88)90605-1. [DOI] [PubMed] [Google Scholar]
  8. Elhai J., Wolk C. P. Conjugal transfer of DNA to cyanobacteria. Methods Enzymol. 1988;167:747–754. doi: 10.1016/0076-6879(88)67086-8. [DOI] [PubMed] [Google Scholar]
  9. Elhai J., Wolk C. P. Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. EMBO J. 1990 Oct;9(10):3379–3388. doi: 10.1002/j.1460-2075.1990.tb07539.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Golden S. S., Brusslan J., Haselkorn R. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 1987;153:215–231. doi: 10.1016/0076-6879(87)53055-5. [DOI] [PubMed] [Google Scholar]
  11. Hoover T. R., Imperial J., Liang J. H., Ludden P. W., Shah V. K. Dinitrogenase with altered substrate specificity results from the use of homocitrate analogues for in vitro synthesis of the iron-molybdenum cofactor. Biochemistry. 1988 May 17;27(10):3647–3652. doi: 10.1021/bi00410a019. [DOI] [PubMed] [Google Scholar]
  12. Hoover T. R., Imperial J., Ludden P. W., Shah V. K. Homocitrate is a component of the iron-molybdenum cofactor of nitrogenase. Biochemistry. 1989 Apr 4;28(7):2768–2771. doi: 10.1021/bi00433a004. [DOI] [PubMed] [Google Scholar]
  13. Hoover T. R., Robertson A. D., Cerny R. L., Hayes R. N., Imperial J., Shah V. K., Ludden P. W. Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate. 1987 Oct 29-Nov 4Nature. 329(6142):855–857. doi: 10.1038/329855a0. [DOI] [PubMed] [Google Scholar]
  14. Imperial J., Ugalde R. A., Shah V. K., Brill W. J. Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae. J Bacteriol. 1984 Apr;158(1):187–194. doi: 10.1128/jb.158.1.187-194.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobson M. R., Brigle K. E., Bennett L. T., Setterquist R. A., Wilson M. S., Cash V. L., Beynon J., Newton W. E., Dean D. R. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol. 1989 Feb;171(2):1017–1027. doi: 10.1128/jb.171.2.1017-1027.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim J., Rees D. C. Nitrogenase and biological nitrogen fixation. Biochemistry. 1994 Jan 18;33(2):389–397. doi: 10.1021/bi00168a001. [DOI] [PubMed] [Google Scholar]
  17. Klipp W., Masepohl B., Pühler A. Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus: duplication of a nifA-nifB region. J Bacteriol. 1988 Feb;170(2):693–699. doi: 10.1128/jb.170.2.693-699.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuritz T., Ernst A., Black T. A., Wolk C. P. High-resolution mapping of genetic loci of Anabaena PCC 7120 required for photosynthesis and nitrogen fixation. Mol Microbiol. 1993 Apr;8(1):101–110. doi: 10.1111/j.1365-2958.1993.tb01207.x. [DOI] [PubMed] [Google Scholar]
  19. Madden M. S., Krezel A. M., Allen R. M., Ludden P. W., Shah V. K. Plausible structure of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6487–6491. doi: 10.1073/pnas.89.14.6487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Madden M. S., Paustian T. D., Ludden P. W., Shah V. K. Effects of homocitrate, homocitrate lactone, and fluorohomocitrate on nitrogenase in NifV- mutants of Azotobacter vinelandii. J Bacteriol. 1991 Sep;173(17):5403–5405. doi: 10.1128/jb.173.17.5403-5405.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Masepohl B., Angermüller S., Hennecke S., Hübner P., Moreno-Vivian C., Klipp W. Nucleotide sequence and genetic analysis of the Rhodobacter capsulatus ORF6-nifUI SVW gene region: possible role of NifW in homocitrate processing. Mol Gen Genet. 1993 Apr;238(3):369–382. doi: 10.1007/BF00291996. [DOI] [PubMed] [Google Scholar]
  22. Masepohl B., Klipp W., Pühler A. Genetic characterization and sequence analysis of the duplicated nifA/nifB gene region of Rhodobacter capsulatus. Mol Gen Genet. 1988 Apr;212(1):27–37. doi: 10.1007/BF00322441. [DOI] [PubMed] [Google Scholar]
  23. Meijer W. G., Tabita F. R. Isolation and characterization of the nifUSVW-rpoN gene cluster from Rhodobacter sphaeroides. J Bacteriol. 1992 Jun;174(12):3855–3866. doi: 10.1128/jb.174.12.3855-3866.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moreno-Vivian C., Hennecke S., Pühler A., Klipp W. Open reading frame 5 (ORF5), encoding a ferredoxinlike protein, and nifQ are cotranscribed with nifE, nifN, nifX, and ORF4 in Rhodobacter capsulatus. J Bacteriol. 1989 May;171(5):2591–2598. doi: 10.1128/jb.171.5.2591-2598.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moreno-Vivian C., Schmehl M., Masepohl B., Arnold W., Klipp W. DNA sequence and genetic analysis of the Rhodobacter capsulatus nifENX gene region: homology between NifX and NifB suggests involvement of NifX in processing of the iron-molybdenum cofactor. Mol Gen Genet. 1989 Apr;216(2-3):353–363. doi: 10.1007/BF00334376. [DOI] [PubMed] [Google Scholar]
  26. Paul W., Merrick M. The roles of the nifW, nifZ and nifM genes of Klebsiella pneumoniae in nitrogenase biosynthesis. Eur J Biochem. 1989 Jan 2;178(3):675–682. doi: 10.1111/j.1432-1033.1989.tb14497.x. [DOI] [PubMed] [Google Scholar]
  27. Razquin P., Schmitz S., Fillat M. F., Peleato M. L., Böhme H. Transcriptional and translational analysis of ferredoxin and flavodoxin under iron and nitrogen stress in Anabaena sp. strain PCC 7120. J Bacteriol. 1994 Dec;176(23):7409–7411. doi: 10.1128/jb.176.23.7409-7411.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schrautemeier B., Neveling U., Schmitz S. Distinct and differently regulated Mo-dependent nitrogen-fixing systems evolved for heterocysts and vegetative cells of Anabaena variabilis ATCC 29413: characterization of the fdxH1/2 gene regions as part of the nif1/2 gene clusters. Mol Microbiol. 1995 Oct;18(2):357–369. doi: 10.1111/j.1365-2958.1995.mmi_18020357.x. [DOI] [PubMed] [Google Scholar]
  30. Shah V. K., Imperial J., Ugalde R. A., Ludden P. W., Brill W. J. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1636–1640. doi: 10.1073/pnas.83.6.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simon H. M., Homer M. J., Roberts G. P. Perturbation of nifT expression in Klebsiella pneumoniae has limited effect on nitrogen fixation. J Bacteriol. 1996 May;178(10):2975–2977. doi: 10.1128/jb.178.10.2975-2977.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith B. E., Eady R. R. Metalloclusters of the nitrogenases. Eur J Biochem. 1992 Apr 1;205(1):1–15. doi: 10.1111/j.1432-1033.1992.tb16746.x. [DOI] [PubMed] [Google Scholar]
  33. Thiel T., Lyons E. M., Erker J. C., Ernst A. A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9358–9362. doi: 10.1073/pnas.92.20.9358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  35. Yura T., Mori H., Nagai H., Nagata T., Ishihama A., Fujita N., Isono K., Mizobuchi K., Nakata A. Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305–3308. doi: 10.1093/nar/20.13.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES