Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(9):2944–2948. doi: 10.1128/jb.179.9.2944-2948.1997

Roles of histidine-103 and tyrosine-235 in the function of the prolipoprotein diacylglyceryl transferase of Escherichia coli.

K Sankaran 1, K Gan 1, B Rash 1, H Y Qi 1, H C Wu 1, P D Rick 1
PMCID: PMC179058  PMID: 9139912

Abstract

Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is the first enzyme in the posttranslational sequence of reactions resulting in the lipid modification of lipoproteins in bacteria. A previous comparison of the primary sequences of the Lgt enzymes from phylogenetically distant bacterial species revealed several highly conserved amino acid sequences throughout the molecule; the most extensive of these was the region 103HGGLIG108 in the Escherichia coli Lgt (H.-Y. Qi, K. Sankaran, K. Gan, and H. C. Wu, J. Bacteriol. 177:6820-6824, 1995). These studies also revealed that the kinetics of inactivation of E. coli Lgt with diethylpyrocarbonate were consistent with the modification of a single essential histidine or tyrosine residue. The current study was conducted in an attempt to identify this essential amino acid residue in order to further define structure-function relationships in Lgt. Accordingly, all of the histidine residues and seven of the tyrosine residues of E. coli Lgt were altered by site-directed mutagenesis, and the in vitro activities of the altered enzymes, as well the abilities of the respective mutant lgt alleles to complement the temperature-sensitive phenotype of E. coli SK634 defective in Lgt activity, were determined. The data obtained from these studies, in conjunction with additional chemical inactivation studies, support the conclusion that His-103 is essential for Lgt activity. These studies also indicated that Tyr-235 plays an important role in the function of this enzyme. Although other histidine and tyrosine residues were not found to be essential for Lgt activity, alterations of His-196 resulted in a significant reduction of in vitro activity.

Full Text

The Full Text of this article is available as a PDF (137.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  2. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  3. Gan K., Gupta S. D., Sankaran K., Schmid M. B., Wu H. C. Isolation and characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in prolipoprotein modification. J Biol Chem. 1993 Aug 5;268(22):16544–16550. [PubMed] [Google Scholar]
  4. Gan K., Sankaran K., Williams M. G., Aldea M., Rudd K. E., Kushner S. R., Wu H. C. The umpA gene of Escherichia coli encodes phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (lgt) and regulates thymidylate synthase levels through translational coupling. J Bacteriol. 1995 Apr;177(7):1879–1882. doi: 10.1128/jb.177.7.1879-1882.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gupta S. D., Gan K., Schmid M. B., Wu H. C. Characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in apolipoprotein N-acyltransferase. J Biol Chem. 1993 Aug 5;268(22):16551–16556. [PubMed] [Google Scholar]
  6. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  7. Plapp B. V. Site-directed mutagenesis: a tool for studying enzyme catalysis. Methods Enzymol. 1995;249:91–119. doi: 10.1016/0076-6879(95)49032-9. [DOI] [PubMed] [Google Scholar]
  8. Qi H. Y., Sankaran K., Gan K., Wu H. C. Structure-function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions. J Bacteriol. 1995 Dec;177(23):6820–6824. doi: 10.1128/jb.177.23.6820-6824.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sankaran K., Gupta S. D., Wu H. C. Modification of bacterial lipoproteins. Methods Enzymol. 1995;250:683–697. doi: 10.1016/0076-6879(95)50105-3. [DOI] [PubMed] [Google Scholar]
  10. Sankaran K., Wu H. C. Bacterial prolipoprotein signal peptidase. Methods Enzymol. 1995;248:169–180. doi: 10.1016/0076-6879(95)48014-5. [DOI] [PubMed] [Google Scholar]
  11. Sankaran K., Wu H. C. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem. 1994 Aug 5;269(31):19701–19706. [PubMed] [Google Scholar]
  12. Scott D. L., Sigler P. B. Structure and catalytic mechanism of secretory phospholipases A2. Adv Protein Chem. 1994;45:53–88. doi: 10.1016/s0065-3233(08)60638-5. [DOI] [PubMed] [Google Scholar]
  13. Shibuya I., Hiraoka S. Cardiolipin synthase from Escherichia coli. Methods Enzymol. 1992;209:321–330. doi: 10.1016/0076-6879(92)09040-a. [DOI] [PubMed] [Google Scholar]
  14. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tokunaga M., Loranger J. M., Wu H. C. Prolipoprotein modification and processing enzymes in Escherichia coli. J Biol Chem. 1984 Mar 25;259(6):3825–3830. [PubMed] [Google Scholar]
  16. Williams M. G., Fortson M., Dykstra C. C., Jensen P., Kushner S. R. Identification and genetic mapping of the structural gene for an essential Escherichia coli membrane protein. J Bacteriol. 1989 Jan;171(1):565–568. doi: 10.1128/jb.171.1.565-568.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem. 1976 Jul;74(1):160–170. doi: 10.1016/0003-2697(76)90320-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES