Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(9):3030–3035. doi: 10.1128/jb.179.9.3030-3035.1997

Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis.

Y Zhang 1, S V Taylor 1, H J Chiu 1, T P Begley 1
PMCID: PMC179069  PMID: 9139923

Abstract

The characterization of a three-gene operon (the thiC operon) at 331 min, which is involved in thiamine biosynthesis in Bacillus subtilis, is described. The first gene in the operon is homologous to transcription activators in the lysR family. The second and third genes (thiK and thiC) have been subcloned and overexpressed in Escherichia coli. ThiK (30 kDa) catalyzes the phosphorylation of 4-methyl-5-(beta-hydroxyethyl)thiazole. ThiC (27 kDa) catalyzes the substitution of the pyrophosphate of 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate by 4-methyl-5-(beta-hydroxyethyl)thiazole phosphate to yield thiamine phosphate. Transcription of the thiC operon is not regulated by thiamine or 2-methyl-4-amino-5-hydroxymethylpyrimidine and is only slightly repressed by 4-methyl-5-(beta-hydroxyethyl)thiazole.

Full Text

The Full Text of this article is available as a PDF (858.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Begley T. P. The biosynthesis and degradation of thiamin (vitamin B1). Nat Prod Rep. 1996 Jun;13(3):177–185. doi: 10.1039/np9961300177. [DOI] [PubMed] [Google Scholar]
  3. Bohannon D. E., Sonenshein A. L. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J Bacteriol. 1989 Sep;171(9):4718–4727. doi: 10.1128/jb.171.9.4718-4727.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Glaser P., Kunst F., Arnaud M., Coudart M. P., Gonzales W., Hullo M. F., Ionescu M., Lubochinsky B., Marcelino L., Moszer I. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol Microbiol. 1993 Oct;10(2):371–384. [PubMed] [Google Scholar]
  5. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. doi: 10.1073/pnas.85.18.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kelly M. S. Physical and mapping properties of distant linkages between genetic markers in transformation of Bacillus subtilis. Mol Gen Genet. 1967;99(4):333–349. doi: 10.1007/BF00330909. [DOI] [PubMed] [Google Scholar]
  7. Maes M., Messens E. Phenol as grinding material in RNA preparations. Nucleic Acids Res. 1992 Aug 25;20(16):4374–4374. doi: 10.1093/nar/20.16.4374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maundrell K. nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem. 1990 Jul 5;265(19):10857–10864. [PubMed] [Google Scholar]
  9. Nosaka K., Nishimura H., Kawasaki Y., Tsujihara T., Iwashima A. Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from Saccharomyces cerevisiae. J Biol Chem. 1994 Dec 2;269(48):30510–30516. [PubMed] [Google Scholar]
  10. Renna M. C., Najimudin N., Winik L. R., Zahler S. A. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol. 1993 Jun;175(12):3863–3875. doi: 10.1128/jb.175.12.3863-3875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  12. Tazuya K., Morisaki M., Yamada K., Kumaoka H., Saiki K. Biosynthesis of thiamin. Different biosynthetic routes of the thiazole moiety of thiamin in aerobic organisms and anaerobic organisms. Biochem Int. 1987 Jan;14(1):153–160. [PubMed] [Google Scholar]
  13. Vander Horn P. B., Backstrom A. D., Stewart V., Begley T. P. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12. J Bacteriol. 1993 Feb;175(4):982–992. doi: 10.1128/jb.175.4.982-992.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vandeyar M. A., Zahler S. A. Chromosomal insertions of Tn917 in Bacillus subtilis. J Bacteriol. 1986 Aug;167(2):530–534. doi: 10.1128/jb.167.2.530-534.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wyatt D. T., Lee M., Hillman R. E. Factors affecting a cyanogen bromide-based assay of thiamin. Clin Chem. 1989 Nov;35(11):2173–2178. [PubMed] [Google Scholar]
  16. Yamada K., Morisaki M., Kumaoka H. Different biosynthetic pathways of the pyrimidine moiety of thiamin in procaryotes and eucaryotes. Biochim Biophys Acta. 1983 Mar 15;756(1):41–48. doi: 10.1016/0304-4165(83)90022-3. [DOI] [PubMed] [Google Scholar]
  17. Zurlinden A., Schweingruber M. E. Cloning, nucleotide sequence, and regulation of Schizosaccharomyces pombe thi4, a thiamine biosynthetic gene. J Bacteriol. 1994 Nov;176(21):6631–6635. doi: 10.1128/jb.176.21.6631-6635.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES