Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(9):3053–3057. doi: 10.1128/jb.179.9.3053-3057.1997

Nucleotide sequence of the Mycobacterium leprae katG region.

N Nakata 1, M Matsuoka 1, Y Kashiwabara 1, N Okada 1, C Sasakawa 1
PMCID: PMC179074  PMID: 9139928

Abstract

Synthetic oligonucleotide primers based on the DNA sequence data of the Escherichia coli, Mycobacterium tuberculosis, and Mycobacterium intracellulare katG genes encoding the heme-containing enzyme catalase-peroxidase were used to amplify and analyze the Mycobacterium leprae katG region by PCR. A 1.6-kb DNA fragment, which hybridized to an M. tuberculosis katG probe, was obtained from an M. leprae DNA template. Southern hybridization analysis with a probe derived from the PCR-amplified fragment showed that the M. leprae chromosome contains only one copy of the putative katG sequence in a 3.4-kb EcoRI-BamHI DNA segment. Although the nucleotide sequence of the katG region of M. leprae was approximately 70% identical to that of the M. tuberculosis katG gene, no open reading frame encoding a catalase-peroxidase was detectable in the whole sequence. Moreover, two DNA deletions of approximately 100 and 110 bp were found in the M. leprae katG region, and they seemed to be present in all seven M. leprae isolates tested. These results strongly suggest that M. leprae lacks a functional katG gene and catalase-peroxidase activity.

Full Text

The Full Text of this article is available as a PDF (803.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRY V. C., CONALTY M. L., DENNENY J. M., WINDER F. Peroxide formation in bacteriological media. Nature. 1956 Sep 15;178(4533):596–597. doi: 10.1038/178596a0. [DOI] [PubMed] [Google Scholar]
  2. Dhandayuthapani S., Banu M. J., Kashiwabara Y. Cloning and sequence determination of the gene coding for the elongation factor Tu of Mycobacterium leprae. J Biochem. 1994 Apr;115(4):664–669. doi: 10.1093/oxfordjournals.jbchem.a124393. [DOI] [PubMed] [Google Scholar]
  3. Fickett J. W. Recognition of protein coding regions in DNA sequences. Nucleic Acids Res. 1982 Sep 11;10(17):5303–5318. doi: 10.1093/nar/10.17.5303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heym B., Zhang Y., Poulet S., Young D., Cole S. T. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol. 1993 Jul;175(13):4255–4259. doi: 10.1128/jb.175.13.4255-4259.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Levy L. Studies of the mouse foot pad technique for cultivation of Mycobacterium leprae. 3. Doubling time during logarithmic multiplication. Lepr Rev. 1976 Jun;47(2):103–106. doi: 10.5935/0305-7518.19760019. [DOI] [PubMed] [Google Scholar]
  6. Loewen P. C., Switala J., Triggs-Raine B. L. Catalases HPI and HPII in Escherichia coli are induced independently. Arch Biochem Biophys. 1985 Nov 15;243(1):144–149. doi: 10.1016/0003-9861(85)90782-9. [DOI] [PubMed] [Google Scholar]
  7. Lygren S. T., Closs O., Bercouvier H., Wayne L. G. Catalases, peroxidases, and superoxide dismutases in Mycobacterium leprae and other mycobacteria studied by crossed immunoelectrophoresis and polyacrylamide gel electrophoresis. Infect Immun. 1986 Dec;54(3):666–672. doi: 10.1128/iai.54.3.666-672.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MIDDLEBROOK G. Isoniazid-resistance and catalase activity of tubercle bacilli; a preliminary report. Am Rev Tuberc. 1954 Mar;69(3):471–472. doi: 10.1164/art.1954.69.3.471. [DOI] [PubMed] [Google Scholar]
  9. MORSE W. C., WEISER O. L., KUHNS D. M., FUSILLO M., DAIL M. C., EVANS J. R. Study of the virulence of isoniazid-resistant tubercle bacilli in guinea pigs and mice; a preliminary report. Am Rev Tuberc. 1954 Mar;69(3):464–468. doi: 10.1164/art.1954.69.3.464. [DOI] [PubMed] [Google Scholar]
  10. Milano A., De Rossi E., Gusberti L., Heym B., Marone P., Riccardi G. The katE gene, which encodes the catalase HPII of Mycobacterium avium. Mol Microbiol. 1996 Jan;19(1):113–123. doi: 10.1046/j.1365-2958.1996.352876.x. [DOI] [PubMed] [Google Scholar]
  11. Morris S. L., Nair J., Rouse D. A. The catalase-peroxidase of Mycobacterium intracellulare: nucleotide sequence analysis and expression in Escherichia coli. J Gen Microbiol. 1992 Nov;138(11):2363–2370. doi: 10.1099/00221287-138-11-2363. [DOI] [PubMed] [Google Scholar]
  12. O'Brien S., Jackett P. S., Lowrie D. B., Andrew P. W. Guinea-pig alveolar macrophages kill Mycobacterium tuberculosis in vitro, but killing is independent of susceptibility to hydrogen peroxide or triggering of the respiratory burst. Microb Pathog. 1991 Mar;10(3):199–207. doi: 10.1016/0882-4010(91)90054-e. [DOI] [PubMed] [Google Scholar]
  13. Prabhakaran K. Metabolism of Mycobacterium leprae separated from human leprosy nodules. Int J Lepr Other Mycobact Dis. 1967 Jan-Mar;35(1):34–41. [PubMed] [Google Scholar]
  14. Triggs-Raine B. L., Doble B. W., Mulvey M. R., Sorby P. A., Loewen P. C. Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli. J Bacteriol. 1988 Sep;170(9):4415–4419. doi: 10.1128/jb.170.9.4415-4419.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Walker L., Lowrie D. B. Killing of Mycobacterium microti by immunologically activated macrophages. Nature. 1981 Sep 3;293(5827):69–71. doi: 10.1038/293069a0. [DOI] [PubMed] [Google Scholar]
  16. Welinder K. G. Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim Biophys Acta. 1991 Nov 15;1080(3):215–220. doi: 10.1016/0167-4838(91)90004-j. [DOI] [PubMed] [Google Scholar]
  17. Wheeler P. R., Gregory D. Superoxide dismutase, peroxidatic activity and catalase in Mycobacterium leprae purified from armadillo liver. J Gen Microbiol. 1980 Dec;121(2):457–464. doi: 10.1099/00221287-121-2-457. [DOI] [PubMed] [Google Scholar]
  18. Williams D. L., Gillis T. P., Portaels F. Geographically distinct isolates of Mycobacterium leprae exhibit no genotypic diversity by restriction fragment-length polymorphism analysis. Mol Microbiol. 1990 Oct;4(10):1653–1659. doi: 10.1111/j.1365-2958.1990.tb00542.x. [DOI] [PubMed] [Google Scholar]
  19. Woods S. A., Cole S. T. A family of dispersed repeats in Mycobacterium leprae. Mol Microbiol. 1990 Oct;4(10):1745–1751. doi: 10.1111/j.1365-2958.1990.tb00552.x. [DOI] [PubMed] [Google Scholar]
  20. Zhang Y., Garbe T., Young D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol. 1993 May;8(3):521–524. doi: 10.1111/j.1365-2958.1993.tb01596.x. [DOI] [PubMed] [Google Scholar]
  21. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]
  22. von Ossowski I., Mulvey M. R., Leco P. A., Borys A., Loewen P. C. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol. 1991 Jan;173(2):514–520. doi: 10.1128/jb.173.2.514-520.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES