Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(10):3122–3126. doi: 10.1128/jb.179.10.3122-3126.1997

comYA, a gene similar to comGA of Bacillus subtilis, is essential for competence-factor-dependent DNA transformation in Streptococcus gordonii.

R D Lunsford 1, A G Roble 1
PMCID: PMC179087  PMID: 9150204

Abstract

Tn4001 mutagenesis identified a new competence gene in Streptococcus gordonii Challis designated comYA. A comYA mutant was completely deficient in transformation and exhibited decreased levels of DNA binding and hydrolysis. The deduced 319-amino-acid ComYA protein exhibited 57% similarity and 33% identity to the ComGA transporter protein of Bacillus subtilis and contained the Walker A-box motif conserved in ATP-binding proteins as well as aspartic acid boxes Asp-1 and Asp-2 present in some components of the general secretory pathway of gram-negative bacteria. comYA appeared to be part of a putative operon encompassing a comGB homolog, designated comYB, together with sequences that could encode ComGC- and ComGD-like peptides designated ComYC and ComYD, respectively, as well as other components. The putative ComYC and ComYD peptides had leader sequences similar to the type IV N-methylphenylalanine pilins of gram-negative bacteria, but unlike other examples in this class, including B. subtilis, they contained an alanine at position -1 of the leader instead of the usual glycine residue. Northern analysis identified a single 6.0-kb comYA-containing transcript strictly dependent on exogenous competence factor for expression in ComA1 cells. An identical pattern of expression was seen in wild-type Challis cells grown under conditions of maximal competence but not in cells that were noncompetent.

Full Text

The Full Text of this article is available as a PDF (342.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albano M., Breitling R., Dubnau D. A. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J Bacteriol. 1989 Oct;171(10):5386–5404. doi: 10.1128/jb.171.10.5386-5404.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boor K. J., Duncan M. L., Price C. W. Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. J Biol Chem. 1995 Sep 1;270(35):20329–20336. doi: 10.1074/jbc.270.35.20329. [DOI] [PubMed] [Google Scholar]
  3. Breitling R., Dubnau D. A membrane protein with similarity to N-methylphenylalanine pilins is essential for DNA binding by competent Bacillus subtilis. J Bacteriol. 1990 Mar;172(3):1499–1508. doi: 10.1128/jb.172.3.1499-1508.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burrows L. L., Olah-Winfield E., Lo R. Y. Molecular analysis of the leukotoxin determinants from Pasteurella haemolytica serotypes 1 to 16. Infect Immun. 1993 Dec;61(12):5001–5007. doi: 10.1128/iai.61.12.5001-5007.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byrne M. E., Rouch D. A., Skurray R. A. Nucleotide sequence analysis of IS256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene. 1989 Sep 30;81(2):361–367. doi: 10.1016/0378-1119(89)90197-2. [DOI] [PubMed] [Google Scholar]
  6. Cheng Q., Campbell E. A., Naughton A. M., Johnson S., Masure H. R. The com locus controls genetic transformation in Streptococcus pneumoniae. Mol Microbiol. 1997 Feb;23(4):683–692. doi: 10.1046/j.1365-2958.1997.2481617.x. [DOI] [PubMed] [Google Scholar]
  7. Chung Y. S., Dubnau D. ComC is required for the processing and translocation of comGC, a pilin-like competence protein of Bacillus subtilis. Mol Microbiol. 1995 Feb;15(3):543–551. doi: 10.1111/j.1365-2958.1995.tb02267.x. [DOI] [PubMed] [Google Scholar]
  8. Clewell D. B., Flannagan S. E., Jaworski D. D. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 1995 Jun;3(6):229–236. doi: 10.1016/s0966-842x(00)88930-1. [DOI] [PubMed] [Google Scholar]
  9. Deddish P., Slade H. D. Binding of deoxyribonucleic acid by cell walls of transformable and nontransformable streptococci. J Bacteriol. 1971 Mar;105(3):779–786. doi: 10.1128/jb.105.3.779-786.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gu J., Ren K., Dubner R., Iadarola M. J. Cloning of a DNA binding protein that is a tyrosine kinase substrate and recognizes an upstream initiator-like sequence in the promoter of the preprodynorphin gene. Brain Res Mol Brain Res. 1994 Jul;24(1-4):77–88. doi: 10.1016/0169-328x(94)90120-1. [DOI] [PubMed] [Google Scholar]
  11. Hobbs M., Mattick J. S. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol. 1993 Oct;10(2):233–243. doi: 10.1111/j.1365-2958.1993.tb01949.x. [DOI] [PubMed] [Google Scholar]
  12. Håvarstein L. S., Gaustad P., Nes I. F., Morrison D. A. Identification of the streptococcal competence-pheromone receptor. Mol Microbiol. 1996 Aug;21(4):863–869. doi: 10.1046/j.1365-2958.1996.521416.x. [DOI] [PubMed] [Google Scholar]
  13. Leonard C. G., Cole R. M. Purification and properties of Streptococcal competence factor isolated from chemically defined medium. J Bacteriol. 1972 Apr;110(1):273–280. doi: 10.1128/jb.110.1.273-280.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leonard C. G. Early events in development of streptococcal competence. J Bacteriol. 1973 Jun;114(3):1198–1205. doi: 10.1128/jb.114.3.1198-1205.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lindler L. E., Macrina F. L. Characterization of genetic transformation in Streptococcus mutans by using a novel high-efficiency plasmid marker rescue system. J Bacteriol. 1986 May;166(2):658–665. doi: 10.1128/jb.166.2.658-665.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lunsford R. D. A Tn4001 delivery system for Streptococcus gordonii (Challis). Plasmid. 1995 Mar;33(2):153–157. doi: 10.1006/plas.1995.1016. [DOI] [PubMed] [Google Scholar]
  17. Lunsford R. D., London J. Natural genetic transformation in Streptococcus gordonii: comX imparts spontaneous competence on strain wicky. J Bacteriol. 1996 Oct;178(19):5831–5835. doi: 10.1128/jb.178.19.5831-5835.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lunsford R. D., Macrina F. L. Molecular cloning and characterization of scrB, the structural gene for the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system sucrose-6-phosphate hydrolase. J Bacteriol. 1986 May;166(2):426–434. doi: 10.1128/jb.166.2.426-434.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lunsford R. D., Nguyen N., London J. DNA-binding activities in Streptococcus gordonii: identification of a receptor-nickase and a histonelike protein. Curr Microbiol. 1996 Feb;32(2):95–100. doi: 10.1007/s002849900017. [DOI] [PubMed] [Google Scholar]
  20. Lunsford R. D. Recovery of RNA from oral streptococci. Biotechniques. 1995 Mar;18(3):412–414. [PubMed] [Google Scholar]
  21. Magnuson R., Solomon J., Grossman A. D. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell. 1994 Apr 22;77(2):207–216. doi: 10.1016/0092-8674(94)90313-1. [DOI] [PubMed] [Google Scholar]
  22. Pestova E. V., Håvarstein L. S., Morrison D. A. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol. 1996 Aug;21(4):853–862. doi: 10.1046/j.1365-2958.1996.501417.x. [DOI] [PubMed] [Google Scholar]
  23. Possot O., Pugsley A. P. Molecular characterization of PulE, a protein required for pullulanase secretion. Mol Microbiol. 1994 Apr;12(2):287–299. doi: 10.1111/j.1365-2958.1994.tb01017.x. [DOI] [PubMed] [Google Scholar]
  24. Puyet A., Greenberg B., Lacks S. A. Genetic and structural characterization of endA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J Mol Biol. 1990 Jun 20;213(4):727–738. doi: 10.1016/S0022-2836(05)80259-1. [DOI] [PubMed] [Google Scholar]
  25. Raina J. L., Macrina F. L. A competence specific inducible protein promotes in vivo recombination in Streptococcus sanguis. Mol Gen Genet. 1982;185(1):21–29. doi: 10.1007/BF00333785. [DOI] [PubMed] [Google Scholar]
  26. Raina J. L., Ravin A. W. Switches in macromolecular synthesis during induction of competence for transformation of Streptococcus sanguis. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6062–6066. doi: 10.1073/pnas.77.10.6062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whittaker C. J., Klier C. M., Kolenbrander P. E. Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol. 1996;50:513–552. doi: 10.1146/annurev.micro.50.1.513. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES