Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(10):3146–3153. doi: 10.1128/jb.179.10.3146-3153.1997

2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea.

D Desmarais 1, P E Jablonski 1, N S Fedarko 1, M F Roberts 1
PMCID: PMC179091  PMID: 9150208

Abstract

A novel 1-->1 alpha-linked glucose disaccharide with sulfate at C-2 of one of the glucose moieties, 1-(2-O-sulfo-alpha-D-glucopyranosyl)-alpha-D-glycopyranose, was found to be the major organic solute accumulated by a Natronococcus sp. and several Natronobacterium species. The concentration of this novel disaccharide, termed sulfotrehalose, increased with increasing concentrations of external NaCl, behavior consistent with its identity as an osmolyte. A variety of noncharged disaccharides (trehalose, sucrose, cellobiose, and maltose) were added to the growth medium to see if they could suppress synthesis and accumulation of sulfotrehalose. Sucrose was the most effective in suppressing biosynthesis and accumulation of sulfotrehalose, with levels as low as 0.1 mM being able to significantly replace the novel charged osmolyte. Other common osmolytes (glycine betaine, glutamate, and proline) were not accumulated or used for osmotic balance in place of the sulfotrehalose by the halophilic archaeons.

Full Text

The Full Text of this article is available as a PDF (225.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Brown A. D. Microbial water stress. Bacteriol Rev. 1976 Dec;40(4):803–846. doi: 10.1128/br.40.4.803-846.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ciulla R. A., Burggraf S., Stetter K. O., Roberts M. F. Occurrence and Role of Di-myo-Inositol-1,1'-Phosphate in Methanococcus igneus. Appl Environ Microbiol. 1994 Oct;60(10):3660–3664. doi: 10.1128/aem.60.10.3660-3664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ciulla R. A., Diaz M. R., Taylor B. F., Roberts M. F. Organic osmolytes in aerobic bacteria from mono lake, an alkaline, moderately hypersaline environment. Appl Environ Microbiol. 1997 Jan;63(1):220–226. doi: 10.1128/aem.63.1.220-226.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conrad H. E., Sr, Varboncouer E., James M. E. Qualitative and quantitative analysis of reducing carbohydrates by radiochromatography on ion-exchange papers. Anal Biochem. 1973 Feb;51(2):486–500. doi: 10.1016/0003-2697(73)90505-8. [DOI] [PubMed] [Google Scholar]
  6. Csonka L. N. A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J Bacteriol. 1982 Sep;151(3):1433–1443. doi: 10.1128/jb.151.3.1433-1443.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DODGSON K. S. Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem J. 1961 Feb;78:312–319. doi: 10.1042/bj0780312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fu M. X., Wells-Knecht K. J., Blackledge J. A., Lyons T. J., Thorpe S. R., Baynes J. W. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 1994 May;43(5):676–683. doi: 10.2337/diab.43.5.676. [DOI] [PubMed] [Google Scholar]
  9. Gum E. K., Jr, Brown R. D., Jr Two alternative HPLC separation methods for reduced and normal cellooligosaccharides. Anal Biochem. 1977 Oct;82(2):372–375. doi: 10.1016/0003-2697(77)90174-9. [DOI] [PubMed] [Google Scholar]
  10. Lai M. C., Sowers K. R., Robertson D. E., Roberts M. F., Gunsalus R. P. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol. 1991 Sep;173(17):5352–5358. doi: 10.1128/jb.173.17.5352-5358.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matsubara T., Iida-Tanaka N., Kamekura M., Moldoveanu N., Ishizuka I., Onishi H., Hayashi A., Kates M. Polar lipids of a non-alkaliphilic extremely halophilic archaebacterium strain 172: a novel bis-sulfated glycolipid. Biochim Biophys Acta. 1994 Aug 25;1214(1):97–108. doi: 10.1016/0005-2760(94)90014-0. [DOI] [PubMed] [Google Scholar]
  12. Measures J. C. Role of amino acids in osmoregulation of non-halophilic bacteria. Nature. 1975 Oct 2;257(5525):398–400. doi: 10.1038/257398a0. [DOI] [PubMed] [Google Scholar]
  13. Monnier V. M. Toward a Maillard reaction theory of aging. Prog Clin Biol Res. 1989;304:1–22. [PubMed] [Google Scholar]
  14. Robertson D. E., Lai M. C., Gunsalus R. P., Roberts M. F. Composition, Variation, and Dynamics of Major Osmotic Solutes in Methanohalophilus Strain FDF1. Appl Environ Microbiol. 1992 Aug;58(8):2438–2443. doi: 10.1128/aem.58.8.2438-2443.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robertson D. E., Noll D., Roberts M. F. Free amino acid dynamics in marine methanogens. beta-Amino acids as compatible solutes. J Biol Chem. 1992 Jul 25;267(21):14893–14901. [PubMed] [Google Scholar]
  16. Robertson D. E., Noll D., Roberts M. F., Menaia J. A., Boone D. R. Detection of the osmoregulator betaine in methanogens. Appl Environ Microbiol. 1990 Feb;56(2):563–565. doi: 10.1128/aem.56.2.563-565.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Robertson D. E., Roberts M. F., Belay N., Stetter K. O., Boone D. R. Occurrence of beta-glutamate, a novel osmolyte, in marine methanogenic bacteria. Appl Environ Microbiol. 1990 May;56(5):1504–1508. doi: 10.1128/aem.56.5.1504-1508.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robertson D. E., Roberts M. F. Organic osmolytes in methanogenic archaebacteria. Biofactors. 1991 Jan;3(1):1–9. [PubMed] [Google Scholar]
  19. Roll D. E., Conrad H. E. Quantitative radiochromatographic analysis of the major groups of carbohydrates in cultured animal cells. Anal Biochem. 1977 Feb;77(2):397–412. doi: 10.1016/0003-2697(77)90253-6. [DOI] [PubMed] [Google Scholar]
  20. Smith L. T., Smith G. M., Madkour M. A. Osmoregulation in Agrobacterium tumefaciens: accumulation of a novel disaccharide is controlled by osmotic strength and glycine betaine. J Bacteriol. 1990 Dec;172(12):6849–6855. doi: 10.1128/jb.172.12.6849-6855.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sowers K. R., Robertson D. E., Noll D., Gunsalus R. P., Roberts M. F. N epsilon-acetyl-beta-lysine: an osmolyte synthesized by methanogenic archaebacteria. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9083–9087. doi: 10.1073/pnas.87.23.9083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Upasani V. N., Desai S. G., Moldoveanu N., Kates M. Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains. Microbiology. 1994 Aug;140(Pt 8):1959–1966. doi: 10.1099/13500872-140-8-1959. [DOI] [PubMed] [Google Scholar]
  23. Visscher P. T., van Gemerden H. Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl Environ Microbiol. 1991 Nov;57(11):3237–3242. doi: 10.1128/aem.57.11.3237-3242.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vreeland R. H. Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol. 1987;14(4):311–356. doi: 10.3109/10408418709104443. [DOI] [PubMed] [Google Scholar]
  25. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES