Abstract
Two exo-beta-1,3-glucanases (herein designated exoG-I and exoG-II) were isolated from the cell wall autolysate of the filamentous fungus Aspergillus fumigatus and purified by ion-exchange, hydrophobic-interaction, and gel filtration chromatographies. Molecular masses estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 82 kDa for the monomeric exoG-I and 230 kDa for the dimeric exoG-II. exoG-I and exoG-II were glycosylated, and N glycans accounted, respectively, for 2 and 44 kDa. Their pH optimum is 5.0. Their optimum temperatures are 55 degrees C for exoG-I and 65 degrees C for exoG-II. By a sensitive colorimetric method and high-performance anion-exchange chromatography for product analysis, two patterns of exo-beta-1,3-glucanase activities were found. The 230-kDa exoG-II enzyme acts on p-nitrophenyl-beta-D-glucoside, beta-1,6-glucan, and beta-1,3-glucan. This activity, which retains the anomeric configuration of glucose released, presented a multichain pattern of attack of the glucan chains and a decrease in the maximum initial velocity (Vm) with the increasing size of the substrate. In contrast, the 82-kDa exoG-I, which inverts the anomeric configuration of the glucose released, hydrolyzed exclusively the beta-1,3-glucan chain with a minimal substrate size of 4 glucose residues. This enzyme presented a repetitive-attack pattern, characterized by an increase in Vm with an increase in substrate size and by a degradation of the glucan chain until it reached laminaritetraose, the limit substrate size. The 82-kDa exoG-I and 230-kDa exoG-II enzymes correspond to a beta-1,3-glucan-glucohydrolase (EC 3.2.1.58) and to a beta-D-glucoside-glucohydrolase (EC 3.2.1.21), respectively. The occurrence and functions of these two classes of exo-beta-1,3-glucanases in other fungal species are discussed.
Full Text
The Full Text of this article is available as a PDF (332.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cabib E., Bowers B., Sburlati A., Silverman S. J. Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci. 1988 Dec;5(12):370–375. [PubMed] [Google Scholar]
- Copa-Patiño J. L., Reyes F., Pérez-Leblic M. I. Purification and properties of a 1,3-beta-glucanase from Penicillium oxalicum autolysates. FEMS Microbiol Lett. 1989 Dec;53(3):285–291. doi: 10.1016/0378-1097(89)90232-2. [DOI] [PubMed] [Google Scholar]
- FRIEDLAENDER M. H., COOK W. H., MARTIN W. G. Molecular weight and hydrodynamic properties of laminarin. Biochim Biophys Acta. 1954 May;14(1):136–144. doi: 10.1016/0006-3002(54)90140-7. [DOI] [PubMed] [Google Scholar]
- Fontaine T., Hartland R. P., Beauvais A., Diaquin M., Latge J. P. Purification and characterization of an endo-1,3-beta-glucanase from Aspergillus fumigatus. Eur J Biochem. 1997 Jan 15;243(1-2):315–321. doi: 10.1111/j.1432-1033.1997.0315a.x. [DOI] [PubMed] [Google Scholar]
- Hartland R. P., Emerson G. W., Sullivan P. A. A secreted beta-glucan-branching enzyme from Candida albicans. Proc Biol Sci. 1991 Nov 22;246(1316):155–160. doi: 10.1098/rspb.1991.0138. [DOI] [PubMed] [Google Scholar]
- Hartland R. P., Fontaine T., Debeaupuis J. P., Simenel C., Delepierre M., Latgé J. P. A novel beta-(1-3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus. J Biol Chem. 1996 Oct 25;271(43):26843–26849. doi: 10.1074/jbc.271.43.26843. [DOI] [PubMed] [Google Scholar]
- Hearn V. M., Sietsma J. H. Chemical and immunological analysis of the Aspergillus fumigatus cell wall. Microbiology. 1994 Apr;140(Pt 4):789–795. doi: 10.1099/00221287-140-4-789. [DOI] [PubMed] [Google Scholar]
- Hien N. H., Fleet G. H. Separation and characterization of six (1 leads to 3)-beta-glucanases from Saccharomyces cerevisiae. J Bacteriol. 1983 Dec;156(3):1204–1213. doi: 10.1128/jb.156.3.1204-1213.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang B., Ram A. F., Sheraton J., Klis F. M., Bussey H. Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol Gen Genet. 1995 Aug 21;248(3):260–269. doi: 10.1007/BF02191592. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Larriba G., Andaluz E., Cueva R., Basco R. D. Molecular biology of yeast exoglucanases. FEMS Microbiol Lett. 1995 Jan 15;125(2-3):121–126. doi: 10.1111/j.1574-6968.1995.tb07347.x. [DOI] [PubMed] [Google Scholar]
- Latgé J. P., Kobayashi H., Debeaupuis J. P., Diaquin M., Sarfati J., Wieruszeski J. M., Parra E., Bouchara J. P., Fournet B. Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect Immun. 1994 Dec;62(12):5424–5433. doi: 10.1128/iai.62.12.5424-5433.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
- Mishra C., Robbins P. W. Specific beta glucanases as tools for polysaccharide structure determination. Glycobiology. 1995 Oct;5(7):645–654. doi: 10.1093/glycob/5.7.645. [DOI] [PubMed] [Google Scholar]
- Molina M., Cenamor R., Nombela C. Exo-1,3-beta-glucanase activity in Candida albicans: effect of the yeast-to-mycelium transition. J Gen Microbiol. 1987 Mar;133(3):609–617. doi: 10.1099/00221287-133-3-609. [DOI] [PubMed] [Google Scholar]
- Muthukumar G., Suhng S. H., Magee P. T., Jewell R. D., Primerano D. A. The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance. J Bacteriol. 1993 Jan;175(2):386–394. doi: 10.1128/jb.175.2.386-394.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson T. E. The attack mechanism of an exo-1,3-beta-glucosidase from Basidiomycete sp. QM 806. Biochim Biophys Acta. 1975 Jan 23;377(1):139–145. doi: 10.1016/0005-2744(75)90294-6. [DOI] [PubMed] [Google Scholar]
- Nelson T. E. The hydrolytic mechanism of an exo-beta-(1--3)-D-glucanase. J Biol Chem. 1970 Feb 25;245(4):869–872. [PubMed] [Google Scholar]
- Nombela C., Molina M., Cenamor R., Sanchez M. Yeast beta-glucanases: a complex system of secreted enzymes. Microbiol Sci. 1988 Nov;5(11):328–332. [PubMed] [Google Scholar]
- Notario V. beta-Glucanases from Candida albicans: purification, characterization and the nature of their attachment to cell wall components. J Gen Microbiol. 1982 Apr;128(4):747–759. doi: 10.1099/00221287-128-4-747. [DOI] [PubMed] [Google Scholar]
- Pitson S. M., Seviour R. J., McDougall B. M. Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme Microb Technol. 1993 Mar;15(3):178–192. doi: 10.1016/0141-0229(93)90136-p. [DOI] [PubMed] [Google Scholar]
- Rapp P. Formation, separation and characterization of three beta-1,3-glucanases from Sclerotium glucanicum. Biochim Biophys Acta. 1992 Jul 21;1117(1):7–14. doi: 10.1016/0304-4165(92)90155-n. [DOI] [PubMed] [Google Scholar]
- Ridruejo J. C., Muñoz M. D., Andaluz E., Larriba G. Inhibition of yeast exoglucanases by glucosidase inhibitors. Biochim Biophys Acta. 1989 Dec 8;993(2-3):179–185. doi: 10.1016/0304-4165(89)90161-x. [DOI] [PubMed] [Google Scholar]
- Robyt J. F., French D. Multiple attach hypothesis of alpha-amylase action: action of porcine pancreatic, human salivary, and Aspergillus oryzae alpha-amylases. Arch Biochem Biophys. 1967 Oct;122(1):8–16. doi: 10.1016/0003-9861(67)90118-x. [DOI] [PubMed] [Google Scholar]
- Robyt J. F., French D. Multiple attack and polarity of action of porcine pancreatic alpha-amylase. Arch Biochem Biophys. 1970 Jun;138(2):662–670. doi: 10.1016/0003-9861(70)90394-2. [DOI] [PubMed] [Google Scholar]
- Rudick M. J., Elbein A. D. Glycoprotein enzymes secreted by Aspergillus fumigatus. Purification and properties of beta-glucosidase. J Biol Chem. 1973 Sep 25;248(18):6506–6513. [PubMed] [Google Scholar]
- Rudick M. J., Elbein A. D. Glycoprotein enzymes secreted by Aspergillus fumigatus: purification and properties of a second beta-glucosidase. J Bacteriol. 1975 Oct;124(1):534–541. doi: 10.1128/jb.124.1.534-541.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- San Segundo P., Correa J., Vazquez de Aldana C. R., del Rey F. SSG1, a gene encoding a sporulation-specific 1,3-beta-glucanase in Saccharomyces cerevisiae. J Bacteriol. 1993 Jun;175(12):3823–3837. doi: 10.1128/jb.175.12.3823-3837.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santos T., Sánchez M., Villanueva J. R., Nombela C. Derepression of beta-1,3-glucanases in Penicillium italicum: localization of the various enzymes and correlation with cell wall glucan mobilization and autolysis. J Bacteriol. 1979 Jan;137(1):6–12. doi: 10.1128/jb.137.1.6-12.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thoma J. A. Models for depolymerizing enzymes: criteria for discrimination of models. Carbohydr Res. 1976 May;48(1):85–103. doi: 10.1016/s0008-6215(00)83517-x. [DOI] [PubMed] [Google Scholar]
- del Rey F., Villa T. G., Santos T., Garcia-Acha I., Nombela C. Purification and partial characterization of a new, sporulation specific, exo-beta-glucanase from Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1347–1353. doi: 10.1016/0006-291x(82)90935-4. [DOI] [PubMed] [Google Scholar]