Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(10):3181–3187. doi: 10.1128/jb.179.10.3181-3187.1997

Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene.

Y Chen 1, S Miyata 1, S Makino 1, R Moriyama 1
PMCID: PMC179095  PMID: 9150212

Abstract

The exudate of fully germinated spores of Clostridium perfringens S40 in 0.15 M KCI-50 mM potassium phosphate (pH 7.0) was found to contain another spore-lytic enzyme in addition to the germination-specific amidase previously characterized (S. Miyata, R. Moriyama, N. Miyahara, and S. Makino, Microbiology 141:2643-2650, 1995). The lytic enzyme was purified to homogeneity by anion-exchange chromatography and shown to be a muramidase which requires divalent cations (Ca2+, Mg2+, or Mn2+) for its activity. The enzyme was inactivated by sulfhydryl reagents, and sodium thioglycolate reversed the inactivation by Hg2+. The muramidase hydrolyzed isolated spore cortical fragments from a variety of wild-type organisms but had minimal activity on decoated spores and isolated cell walls. However, the enzyme was not capable of digesting isolated cortical fragments from spores of Bacillus subtilis ADD1, which lacks muramic acid delta-lactam in its cortical peptidoglycan. This indicates that the enzyme recognizes the delta-lactam residue peculiar to spore peptidoglycan, suggesting an involvement of the enzyme in spore germination. Immunochemical studies indicated that the muramidase in its mature form is localized on the exterior of the cortex layer in the dormant spore. A gene encoding the muramidase, sleM, was cloned into Escherichia coli, and the nucleotide sequence was determined. The gene encoded a protein of 321 amino acids with a deduced molecular weight of 36,358. The deduced amino acid sequence of the sleM gene indicated that the enzyme is produced in a mature form. It was suggested that the muramidase belongs to a separate group within the lysozyme family typified by the fungus Chalaropsis lysozyme. A possible mechanism for cortex degradation in C. perfringens S40 spores is discussed.

Full Text

The Full Text of this article is available as a PDF (533.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando Y., Tsuzuki T. Energy-dependent activation of spore-lytic enzyme precursor by germinated spores of Clostridium perfringens. Biochem Biophys Res Commun. 1984 Sep 17;123(2):463–467. doi: 10.1016/0006-291x(84)90253-5. [DOI] [PubMed] [Google Scholar]
  2. Atrih A., Zöllner P., Allmaier G., Foster S. J. Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J Bacteriol. 1996 Nov;178(21):6173–6183. doi: 10.1128/jb.178.21.6173-6183.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Croux C., Canard B., Goma G., Soucaille P. Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan. Appl Environ Microbiol. 1992 Apr;58(4):1075–1081. doi: 10.1128/aem.58.4.1075-1081.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Croux C., García J. L. Sequence of the lyc gene encoding the autolytic lysozyme of Clostridium acetobutylicum ATCC824: comparison with other lytic enzymes. Gene. 1991 Jul 31;104(1):25–31. doi: 10.1016/0378-1119(91)90460-s. [DOI] [PubMed] [Google Scholar]
  5. Felch J. W., Inagami T., Hash J. H. The N, O-diacetylmuramidase of Chalaropsis species. V. The complete amino acid sequence. J Biol Chem. 1975 May 25;250(10):3713–3720. [PubMed] [Google Scholar]
  6. Foster S. J., Johnstone K. Pulling the trigger: the mechanism of bacterial spore germination. Mol Microbiol. 1990 Jan;4(1):137–141. doi: 10.1111/j.1365-2958.1990.tb02023.x. [DOI] [PubMed] [Google Scholar]
  7. Foster S. J., Johnstone K. Purification and properties of a germination-specific cortex-lytic enzyme from spores of Bacillus megaterium KM. Biochem J. 1987 Mar 1;242(2):573–579. doi: 10.1042/bj2420573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fouche P. B., Hash J. H. The N,O-diacetylmuramidase of Chalaropsis species. Identificaiton of aspartyl and glutamyl residues in the active site. J Biol Chem. 1978 Oct 10;253(19):6787–6793. [PubMed] [Google Scholar]
  9. García E., García J. L., García P., Arrarás A., Sánchez-Puelles J. M., López R. Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc Natl Acad Sci U S A. 1988 Feb;85(3):914–918. doi: 10.1073/pnas.85.3.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. García P., García J. L., García E., Sánchez-Puelles J. M., López R. Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene. 1990 Jan 31;86(1):81–88. doi: 10.1016/0378-1119(90)90116-9. [DOI] [PubMed] [Google Scholar]
  11. Garnier T., Canard B., Cole S. T. Cloning, mapping, and molecular characterization of the rRNA operons of Clostridium perfringens. J Bacteriol. 1991 Sep;173(17):5431–5438. doi: 10.1128/jb.173.17.5431-5438.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ghuysen J. M., Lamotte-Brasseur J., Joris B., Shockman G. D. Binding site-shaped repeated sequences of bacterial wall peptidoglycan hydrolases. FEBS Lett. 1994 Mar 28;342(1):23–28. doi: 10.1016/0014-5793(94)80577-6. [DOI] [PubMed] [Google Scholar]
  13. Gombas D. E., Labbe R. G. Purification and properties of spore-lytic enzymes from Clostridium perfringens type A spores. J Gen Microbiol. 1985 Jun;131(6):1487–1496. doi: 10.1099/00221287-131-6-1487. [DOI] [PubMed] [Google Scholar]
  14. Groves W. E., Davis F. C., Jr, Sells B. H. Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. Anal Biochem. 1968 Feb;22(2):195–210. doi: 10.1016/0003-2697(68)90307-2. [DOI] [PubMed] [Google Scholar]
  15. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  16. Jollès P., Jollès J. What's new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem. 1984 Sep;63(2):165–189. doi: 10.1007/BF00285225. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lichenstein H. S., Hastings A. E., Langley K. E., Mendiaz E. A., Rohde M. F., Elmore R., Zukowski M. M. Cloning and nucleotide sequence of the N-acetylmuramidase M1-encoding gene from Streptomyces globisporus. Gene. 1990 Mar 30;88(1):81–86. doi: 10.1016/0378-1119(90)90062-v. [DOI] [PubMed] [Google Scholar]
  19. Makino S., Ito N., Inoue T., Miyata S., Moriyama R. A spore-lytic enzyme released from Bacillus cereus spores during germination. Microbiology. 1994 Jun;140(Pt 6):1403–1410. doi: 10.1099/00221287-140-6-1403. [DOI] [PubMed] [Google Scholar]
  20. Mirelman D., Kleppe G., Jensen H. B. Studies on the specificity of action of bacteriophage T4 lysozyme. Eur J Biochem. 1975 Jul 1;55(2):369–3-3. doi: 10.1111/j.1432-1033.1975.tb02171.x. [DOI] [PubMed] [Google Scholar]
  21. Miyata S., Moriyama R., Sugimoto K., Makino S. Purification and partial characterization of a spore cortex-lytic enzyme of Clostridium perfringens S40 spores. Biosci Biotechnol Biochem. 1995 Mar;59(3):514–515. doi: 10.1271/bbb.59.514. [DOI] [PubMed] [Google Scholar]
  22. Moir A., Smith D. A. The genetics of bacterial spore germination. Annu Rev Microbiol. 1990;44:531–553. doi: 10.1146/annurev.mi.44.100190.002531. [DOI] [PubMed] [Google Scholar]
  23. Moriyama R., Hattori A., Miyata S., Kudoh S., Makino S. A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to L-alanine-mediated germination. J Bacteriol. 1996 Oct;178(20):6059–6063. doi: 10.1128/jb.178.20.6059-6063.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moriyama R., Kudoh S., Miyata S., Nonobe S., Hattori A., Makino S. A germination-specific spore cortex-lytic enzyme from Bacillus cereus spores: cloning and sequencing of the gene and molecular characterization of the enzyme. J Bacteriol. 1996 Sep;178(17):5330–5332. doi: 10.1128/jb.178.17.5330-5332.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rood J. I., Cole S. T. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Rev. 1991 Dec;55(4):621–648. doi: 10.1128/mr.55.4.621-648.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sakae Y., Yasuda Y., Tochikubo K. Immunoelectron microscopic localization of one of the spore germination proteins, GerAB, in Bacillus subtilis spores. J Bacteriol. 1995 Nov;177(21):6294–6296. doi: 10.1128/jb.177.21.6294-6296.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sekiguchi J., Akeo K., Yamamoto H., Khasanov F. K., Alonso J. C., Kuroda A. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. . J Bacteriol. 1995 Oct;177(19):5582–5589. doi: 10.1128/jb.177.19.5582-5589.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tatusov R. L., Mushegian A. R., Bork P., Brown N. P., Hayes W. S., Borodovsky M., Rudd K. E., Koonin E. V. Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr Biol. 1996 Mar 1;6(3):279–291. doi: 10.1016/s0960-9822(02)00478-5. [DOI] [PubMed] [Google Scholar]
  30. Thompson J. S., Shockman G. D. A modification of the Park and Johnson reducing sugar determination suitable for the assay of insoluble materials: its application to bacterial cell walls. Anal Biochem. 1968 Feb;22(2):260–268. doi: 10.1016/0003-2697(68)90315-1. [DOI] [PubMed] [Google Scholar]
  31. Warth A. D., Strominger J. L. Structure of the peptidoglycan of bacterial spores: occurrence of the lactam of muramic acid. Proc Natl Acad Sci U S A. 1969 Oct;64(2):528–535. doi: 10.1073/pnas.64.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zawadzke L. E., Bugg T. D., Walsh C. T. Existence of two D-alanine:D-alanine ligases in Escherichia coli: cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry. 1991 Feb 12;30(6):1673–1682. doi: 10.1021/bi00220a033. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES