Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(10):3284–3292. doi: 10.1128/jb.179.10.3284-3292.1997

Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress.

L Kawasaki 1, D Wysong 1, R Diamond 1, J Aguirre 1
PMCID: PMC179108  PMID: 9150225

Abstract

Catalases are ubiquitous hydrogen peroxide-detoxifying enzymes that are central to the cellular antioxidant response. Of two catalase activities detected in the fungus Aspergillus nidulans, the catA gene encodes the spore-specific catalase A (CatA). Here we characterize a second catalase gene, identified after probing a genomic library with catA, and demonstrate that it encodes catalase B. This gene, designated catB, predicts a 721-amino-acid polypeptide (CatB) showing 78% identity to an Aspergillus fumigatus catalase and 61% identity to Aspergillus niger CatR. Notably, similar levels of identity are found when comparing CatB to Escherichia coli catalase HPII (43%), A. nidulans CatA (40%), and the predicted peptide of a presumed catA homolog from A. fumigatus (38%). In contrast, the last two peptides share a 79% identity. The catalase B activity was barely detectable in asexual spores (conidia), disappeared after germination, and started to accumulate 10 h after spore inoculation, throughout growth and conidiation. The catB mRNA was absent from conidia, and its accumulation correlated with catalase activity, suggesting that catB expression is regulated at the transcription level. In contrast, the high CatA activity found in spores was lost gradually during germination and growth. In addition to its developmental regulation, CatB was induced by H2O2, heat shock, paraquat, or uric acid catabolism but not by osmotic stress. This pattern of regulation and the protective role against H2O2 offered by CatA and CatB, at different stages of the A. nidulans life cycle, suggest that catalase gene redundancy performs the function of satisfying catalase demand at the two different stages of metabolic and genetic regulation represented by growing hyphae versus spores. Alternative H2O2 detoxification pathways in A. nidulans were indicated by the fact that catA/catB double mutants were able to grow in substrates whose catabolism generates H2O2.

Full Text

The Full Text of this article is available as a PDF (778.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams T. H., Boylan M. T., Timberlake W. E. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell. 1988 Jul 29;54(3):353–362. doi: 10.1016/0092-8674(88)90198-5. [DOI] [PubMed] [Google Scholar]
  2. Aguirre J. Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene. Mol Microbiol. 1993 Apr;8(2):211–218. doi: 10.1111/j.1365-2958.1993.tb01565.x. [DOI] [PubMed] [Google Scholar]
  3. Aramayo R., Adams T. H., Timberlake W. E. A large cluster of highly expressed genes is dispensable for growth and development in Aspergillus nidulans. Genetics. 1989 May;122(1):65–71. doi: 10.1093/genetics/122.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bol D. K., Yasbin R. E. The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis. Gene. 1991 Dec 20;109(1):31–37. doi: 10.1016/0378-1119(91)90585-y. [DOI] [PubMed] [Google Scholar]
  5. Brody H., Griffith J., Cuticchia A. J., Arnold J., Timberlake W. E. Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res. 1991 Jun 11;19(11):3105–3109. doi: 10.1093/nar/19.11.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Busby T. M., Miller K. Y., Miller B. L. Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics. 1996 May;143(1):155–163. doi: 10.1093/genetics/143.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Champe S. P., Nagle D. L., Yager L. N. Sexual sporulation. Prog Ind Microbiol. 1994;29:429–454. [PubMed] [Google Scholar]
  8. Chary P., Natvig D. O. Evidence for three differentially regulated catalase genes in Neurospora crassa: effects of oxidative stress, heat shock, and development. J Bacteriol. 1989 May;171(5):2646–2652. doi: 10.1128/jb.171.5.2646-2652.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clutterbuck A. J. A mutational analysis of conidial development in Aspergillus nidulans. Genetics. 1969 Oct;63(2):317–327. doi: 10.1093/genetics/63.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cohen G., Rapatz W., Ruis H. Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem. 1988 Sep 1;176(1):159–163. doi: 10.1111/j.1432-1033.1988.tb14263.x. [DOI] [PubMed] [Google Scholar]
  11. Del Río L. A., Ortega M. G., López A. L., Gorgé J. L. A more sensitive modification of the catalase assay with the Clark oxygen electrode. Application to the kinetic study of the pea leaf enzyme. Anal Biochem. 1977 Jun;80(2):409–415. doi: 10.1016/0003-2697(77)90662-5. [DOI] [PubMed] [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Diamond R. D., Clark R. A. Damage to Aspergillus fumigatus and Rhizopus oryzae hyphae by oxidative and nonoxidative microbicidal products of human neutrophils in vitro. Infect Immun. 1982 Nov;38(2):487–495. doi: 10.1128/iai.38.2.487-495.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Engelmann S., Lindner C., Hecker M. Cloning, nucleotide sequence, and regulation of katE encoding a sigma B-dependent catalase in Bacillus subtilis. J Bacteriol. 1995 Oct;177(19):5598–5605. doi: 10.1128/jb.177.19.5598-5605.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fowler T., Rey M. W., Vähä-Vahe P., Power S. D., Berka R. M. The catR gene encoding a catalase from Aspergillus niger: primary structure and elevated expression through increased gene copy number and use of a strong promoter. Mol Microbiol. 1993 Sep;9(5):989–998. doi: 10.1111/j.1365-2958.1993.tb01228.x. [DOI] [PubMed] [Google Scholar]
  16. Guan L., Scandalios J. G. Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5930–5934. doi: 10.1073/pnas.92.13.5930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  18. Hansberg W., Aguirre J. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol. 1990 Jan 23;142(2):201–221. doi: 10.1016/s0022-5193(05)80222-x. [DOI] [PubMed] [Google Scholar]
  19. Hansberg W., de Groot H., Sies H. Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic Biol Med. 1993 Mar;14(3):287–293. doi: 10.1016/0891-5849(93)90025-p. [DOI] [PubMed] [Google Scholar]
  20. Kirk K. E., Morris N. R. Either alpha-tubulin isogene product is sufficient for microtubule function during all stages of growth and differentiation in Aspergillus nidulans. Mol Cell Biol. 1993 Aug;13(8):4465–4476. doi: 10.1128/mcb.13.8.4465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  22. Loewen P. C., Switala J. Multiple catalases in Bacillus subtilis. J Bacteriol. 1987 Aug;169(8):3601–3607. doi: 10.1128/jb.169.8.3601-3607.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. López-Medrano R., Ovejero M. C., Calera J. A., Puente P., Leal F. An immunodominant 90-kilodalton Aspergillus fumigatus antigen is the subunit of a catalase. Infect Immun. 1995 Dec;63(12):4774–4780. doi: 10.1128/iai.63.12.4774-4780.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Machwe A., Kapoor M. Identification of the heat shock protein of Neurospora crassa corresponding to the stress-inducible peroxidase. Biochem Biophys Res Commun. 1993 Oct 29;196(2):692–698. doi: 10.1006/bbrc.1993.2305. [DOI] [PubMed] [Google Scholar]
  25. Marchler G., Schüller C., Adam G., Ruis H. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 1993 May;12(5):1997–2003. doi: 10.1002/j.1460-2075.1993.tb05849.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mayfield J. E., Duvall M. R. Anomalous phylogenies based on bacterial catalase gene sequences. J Mol Evol. 1996 Apr;42(4):469–471. doi: 10.1007/BF02498641. [DOI] [PubMed] [Google Scholar]
  27. Mayfield M. B., Kishi K., Alic M., Gold M. H. Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol. 1994 Dec;60(12):4303–4309. doi: 10.1128/aem.60.12.4303-4309.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Navarro R. E., Stringer M. A., Hansberg W., Timberlake W. E., Aguirre J. catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase. Curr Genet. 1996 Mar;29(4):352–359. [PubMed] [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scazzocchio C. The purine degradation pathway, genetics, biochemistry and regulation. Prog Ind Microbiol. 1994;29:221–257. [PubMed] [Google Scholar]
  31. Schüller C., Brewster J. L., Alexander M. R., Gustin M. C., Ruis H. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 1994 Sep 15;13(18):4382–4389. doi: 10.1002/j.1460-2075.1994.tb06758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Simon M., Adam G., Rapatz W., Spevak W., Ruis H. The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol Cell Biol. 1991 Feb;11(2):699–704. doi: 10.1128/mcb.11.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Skromne I., Sánchez O., Aguirre J. Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology. 1995 Jan;141(Pt 1):21–28. doi: 10.1099/00221287-141-1-21. [DOI] [PubMed] [Google Scholar]
  34. Stringer M. A., Dean R. A., Sewall T. C., Timberlake W. E. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev. 1991 Jul;5(7):1161–1171. doi: 10.1101/gad.5.7.1161. [DOI] [PubMed] [Google Scholar]
  35. Sundaresan M., Yu Z. X., Ferrans V. J., Irani K., Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 1995 Oct 13;270(5234):296–299. doi: 10.1126/science.270.5234.296. [DOI] [PubMed] [Google Scholar]
  36. Timberlake W. E., Clutterbuck A. J. Genetic regulation of conidiation. Prog Ind Microbiol. 1994;29:383–427. [PubMed] [Google Scholar]
  37. Timberlake W. E. Developmental gene regulation in Aspergillus nidulans. Dev Biol. 1980 Aug;78(2):497–510. doi: 10.1016/0012-1606(80)90349-8. [DOI] [PubMed] [Google Scholar]
  38. Toledo I., Aguirre J., Hansberg W. Enzyme inactivation related to a hyperoxidant state during conidiation of Neurospora crassa. Microbiology. 1994 Sep;140(Pt 9):2391–2397. doi: 10.1099/13500872-140-9-2391. [DOI] [PubMed] [Google Scholar]
  39. Toledo I., Noronha-Dutra A. A., Hansberg W. Loss of NAD(P)-reducing power and glutathione disulfide excretion at the start of induction of aerial growth in Neurospora crassa. J Bacteriol. 1991 May;173(10):3243–3249. doi: 10.1128/jb.173.10.3243-3249.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vainshtein B. K., Melik-Adamyan W. R., Barynin V. V., Vagin A. A., Grebenko A. I., Borisov V. V., Bartels K. S., Fita I., Rossmann M. G. Three-dimensional structure of catalase from Penicillium vitale at 2.0 A resolution. J Mol Biol. 1986 Mar 5;188(1):49–61. doi: 10.1016/0022-2836(86)90479-1. [DOI] [PubMed] [Google Scholar]
  41. Van der Leij I., Van den Berg M., Boot R., Franse M., Distel B., Tabak H. F. Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol. 1992 Oct;119(1):153–162. doi: 10.1083/jcb.119.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang Y., Prade R. A., Griffith J., Timberlake W. E., Arnold J. A fast random cost algorithm for physical mapping. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11094–11098. doi: 10.1073/pnas.91.23.11094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wieser R., Adam G., Wagner A., Schüller C., Marchler G., Ruis H., Krawiec Z., Bilinski T. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem. 1991 Jul 5;266(19):12406–12411. [PubMed] [Google Scholar]
  44. Yelton M. M., Hamer J. E., Timberlake W. E. Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1470–1474. doi: 10.1073/pnas.81.5.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yu J. H., Wieser J., Adams T. H. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 1996 Oct 1;15(19):5184–5190. [PMC free article] [PubMed] [Google Scholar]
  46. Zhong H. H., McClung C. R. The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol Gen Genet. 1996 May 23;251(2):196–203. doi: 10.1007/BF02172918. [DOI] [PubMed] [Google Scholar]
  47. von Ossowski I., Mulvey M. R., Leco P. A., Borys A., Loewen P. C. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol. 1991 Jan;173(2):514–520. doi: 10.1128/jb.173.2.514-520.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES