Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(10):3354–3357. doi: 10.1128/jb.179.10.3354-3357.1997

Cloning and insertional inactivation of Streptomyces argillaceus genes involved in the earliest steps of biosynthesis of the sugar moieties of the antitumor polyketide mithramycin.

F Lombó 1, K Siems 1, A F Braña 1, C Méndez 1, K Bindseil 1, J A Salas 1
PMCID: PMC179118  PMID: 9150235

Abstract

Two genes (mtmD and mtmE) were cloned and sequenced from the mithramycin producer Streptomyces argillaceus. Comparison with proteins in databases and enzymatic assays after expression in Escherichia coli showed that they encode a glucose-1-phosphate:TTP thymidylyl transferase and a TDP-D-glucose 4,6-dehydratase, respectively. The mtmD gene was inactivated by gene replacement, generating a nonproducing mutant that accumulates a tetracyclic compound designated premithramycinone. The identification of premithramycinone reveals new aspects of the mithramycin biosynthetic pathway and suggests that at least some glycosylations occur before breakage of the fourth ring.

Full Text

The Full Text of this article is available as a PDF (134.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechthold A., Sohng J. K., Smith T. M., Chu X., Floss H. G. Identification of Streptomyces violaceoruber Tü22 genes involved in the biosynthesis of granaticin. Mol Gen Genet. 1995 Sep 20;248(5):610–620. doi: 10.1007/BF02423457. [DOI] [PubMed] [Google Scholar]
  2. Blanco G., Fu H., Mendez C., Khosla C., Salas J. A. Deciphering the biosynthetic origin of the aglycone of the aureolic acid group of anti-tumor agents. Chem Biol. 1996 Mar;3(3):193–196. doi: 10.1016/s1074-5521(96)90262-8. [DOI] [PubMed] [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Distler J., Ebert A., Mansouri K., Pissowotzki K., Stockmann M., Piepersberg W. Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res. 1987 Oct 12;15(19):8041–8056. doi: 10.1093/nar/15.19.8041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gallo M. A., Ward J., Hutchinson C. R. The dnrM gene in Streptomyces peucetius contains a naturally occurring frameshift mutation that is suppressed by another locus outside of the daunorubicin-production gene cluster. Microbiology. 1996 Feb;142(Pt 2):269–275. doi: 10.1099/13500872-142-2-269. [DOI] [PubMed] [Google Scholar]
  6. Linton K. J., Jarvis B. W., Hutchinson C. R. Cloning of the genes encoding thymidine diphosphoglucose 4,6-dehydratase and thymidine diphospho-4-keto-6-deoxyglucose 3,5-epimerase from the erythromycin-producing Saccharopolyspora erythraea. Gene. 1995 Feb 3;153(1):33–40. doi: 10.1016/0378-1119(94)00809-7. [DOI] [PubMed] [Google Scholar]
  7. Liu H. W., Thorson J. S. Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu Rev Microbiol. 1994;48:223–256. doi: 10.1146/annurev.mi.48.100194.001255. [DOI] [PubMed] [Google Scholar]
  8. Lombó F., Blanco G., Fernández E., Méndez C., Salas J. A. Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. Gene. 1996 Jun 12;172(1):87–91. doi: 10.1016/0378-1119(96)00029-7. [DOI] [PubMed] [Google Scholar]
  9. Merson-Davies L. A., Cundliffe E. Analysis of five tylosin biosynthetic genes from the tyllBA region of the Streptomyces fradiae genome. Mol Microbiol. 1994 Jul;13(2):349–355. doi: 10.1111/j.1365-2958.1994.tb00428.x. [DOI] [PubMed] [Google Scholar]
  10. Montanari A., Rosazza J. P. Biogenesis of chromomycin A3 by Streptomyces griseus. J Antibiot (Tokyo) 1990 Jul;43(7):883–889. doi: 10.7164/antibiotics.43.883. [DOI] [PubMed] [Google Scholar]
  11. Piepersberg W. Pathway engineering in secondary metabolite-producing actinomycetes. Crit Rev Biotechnol. 1994;14(3):251–285. doi: 10.3109/07388554409079835. [DOI] [PubMed] [Google Scholar]
  12. Pissowotzki K., Mansouri K., Piepersberg W. Genetics of streptomycin production in Streptomyces griseus: molecular structure and putative function of genes strELMB2N. Mol Gen Genet. 1991 Dec;231(1):113–123. doi: 10.1007/BF00293829. [DOI] [PubMed] [Google Scholar]
  13. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
  15. Stockmann M., Piepersberg W. Gene probes for the detection of 6-deoxyhexose metabolism in secondary metabolite-producing streptomycetes. FEMS Microbiol Lett. 1992 Jan 1;69(2):185–189. doi: 10.1016/0378-1097(92)90626-y. [DOI] [PubMed] [Google Scholar]
  16. Thompson M. W., Strohl W. R., Floss H. G. Purification and characterization of TDP-D-glucose 4,6-dehydratase from anthracycline-producing streptomycetes. J Gen Microbiol. 1992 Apr;138(4):779–786. doi: 10.1099/00221287-138-4-779. [DOI] [PubMed] [Google Scholar]
  17. Vara J. A., Hutchinson C. R. Purification of thymidine-diphospho-D-glucose 4,6-dehydratase from an erythromycin-producing strain of Saccharopolyspora erythraea by high resolution liquid chromatography. J Biol Chem. 1988 Oct 15;263(29):14992–14995. [PubMed] [Google Scholar]
  18. Yang K., Han L., Ayer S. W., Vining L. C. Accumulation of the angucycline antibiotic rabelomycin after disruption of an oxygenase gene in the jadomycin B biosynthetic gene cluster of Streptomyces venezuelae. Microbiology. 1996 Jan;142(Pt 1):123–132. doi: 10.1099/13500872-142-1-123. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES