Abstract
Lactobacillus sp. strain E1 catalyzed the decarboxylation of glutamate (Glu), resulting in a nearly stoichiometric release of the products gamma-aminobutyrate (GABA) and CO2. This decarboxylation was associated with the net synthesis of ATP. ATP synthesis was inhibited almost completely by nigericin and about 70% by N,N'-dicyclohexylcarbodiimide (DCCD), without inhibition of the decarboxylation. These findings are consistent with the possibility that a proton motive force arises from the cytoplasmic proton consumption that accompanies glutamate decarboxylation and the electrogenic Glu/GABA antiporter and the possibility that this proton motive force is coupled with ATP synthesis by DCCD-sensitive ATPase.
Full Text
The Full Text of this article is available as a PDF (145.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe K., Hayashi H., Maloney P. C., Malone P. C. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria. J Biol Chem. 1996 Feb 9;271(6):3079–3084. doi: 10.1074/jbc.271.6.3079. [DOI] [PubMed] [Google Scholar]
- Allison M. J., Dawson K. A., Mayberry W. R., Foss J. G. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol. 1985 Feb;141(1):1–7. doi: 10.1007/BF00446731. [DOI] [PubMed] [Google Scholar]
- Anantharam V., Allison M. J., Maloney P. C. Oxalate:formate exchange. The basis for energy coupling in Oxalobacter. J Biol Chem. 1989 May 5;264(13):7244–7250. [PubMed] [Google Scholar]
- Baetz A. L., Allison M. J. Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J Bacteriol. 1989 May;171(5):2605–2608. doi: 10.1128/jb.171.5.2605-2608.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimroth P. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev. 1987 Sep;51(3):320–340. doi: 10.1128/mr.51.3.320-340.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fromme P., Gräber P. Activation/inactivation and uni-site catalysis by the reconstituted ATP-synthase from chloroplasts. Biochim Biophys Acta. 1990 Mar 15;1016(1):29–42. doi: 10.1016/0005-2728(90)90003-m. [DOI] [PubMed] [Google Scholar]
- Maloney P. C. Bacterial transporters. Curr Opin Cell Biol. 1994 Aug;6(4):571–582. doi: 10.1016/0955-0674(94)90079-5. [DOI] [PubMed] [Google Scholar]
- Molenaar D., Bosscher J. S., ten Brink B., Driessen A. J., Konings W. N. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol. 1993 May;175(10):2864–2870. doi: 10.1128/jb.175.10.2864-2870.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada Y., Shimada C. Distribution of gamma-aminobutyric acid (GABA) and glutamate decarboxylase (GAD) activity in the guinea pig hippocampus--microassay method for the determination of GAD activity. Brain Res. 1975 Nov 7;98(1):202–206. doi: 10.1016/0006-8993(75)90522-3. [DOI] [PubMed] [Google Scholar]
- Poolman B., Molenaar D., Smid E. J., Ubbink T., Abee T., Renault P. P., Konings W. N. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol. 1991 Oct;173(19):6030–6037. doi: 10.1128/jb.173.19.6030-6037.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruan Z. S., Anantharam V., Crawford I. T., Ambudkar S. V., Rhee S. Y., Allison M. J., Maloney P. C. Identification, purification, and reconstitution of OxlT, the oxalate: formate antiport protein of Oxalobacter formigenes. J Biol Chem. 1992 May 25;267(15):10537–10543. [PubMed] [Google Scholar]
- Salema M., Poolman B., Lolkema J. S., Dias M. C., Konings W. N. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos. Eur J Biochem. 1994 Oct 1;225(1):289–295. doi: 10.1111/j.1432-1033.1994.00289.x. [DOI] [PubMed] [Google Scholar]