Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(10):3374–3377. doi: 10.1128/jb.179.10.3374-3377.1997

Purine biosynthesis in the domain Archaea without folates or modified folates.

R H White 1
PMCID: PMC179124  PMID: 9150241

Abstract

The established pathway for the last two steps in purine biosynthesis, the conversion of 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP) to IMP, is known to utilize 10-formyl-tetrahydrofolate as the required C1 donor cofactor. The biosynthetic conversion of ZMP to IMP in three members of the domain Archaea, Methanobacterium thermoautotrophicum deltaH, M. thermoautotrophicum Marburg, and Sulfolobus solfataricus, however, has been demonstrated to occur with only formate and ATP serving as cofactors. Thus, in these archaea, which use methanopterin (MPT) or another modified folate in place of folate as the C1 carrier coenzyme, neither folate nor a modified folate serves as a cofactor for this biosynthetic transformation. It is concluded that archaea, which function with modified folates such as MPT, are able to carry out purine biosynthesis without the involvement of folates or modified folates.

Full Text

The Full Text of this article is available as a PDF (139.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becher B., Müller V., Gottschalk G. N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na(+)-translocating membrane protein. J Bacteriol. 1992 Dec;174(23):7656–7660. doi: 10.1128/jb.174.23.7656-7660.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  3. DiMarco A. A., Donnelly M. I., Wolfe R. S. Purification and properties of the 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanobacterium thermoautotrophicum. J Bacteriol. 1986 Dec;168(3):1372–1377. doi: 10.1128/jb.168.3.1372-1377.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donnelly M. I., Escalante-Semerena J. C., Rinehart K. L., Jr, Wolfe R. S. Methenyl-tetrahydromethanopterin cyclohydrolase in cell extracts of Methanobacterium. Arch Biochem Biophys. 1985 Nov 1;242(2):430–439. doi: 10.1016/0003-9861(85)90227-9. [DOI] [PubMed] [Google Scholar]
  5. Escalante-Semerena J. C., Rinehart K. L., Jr, Wolfe R. S. Tetrahydromethanopterin, a carbon carrier in methanogenesis. J Biol Chem. 1984 Aug 10;259(15):9447–9455. [PubMed] [Google Scholar]
  6. Gunsalus R. P., Romesser J. A., Wolfe R. S. Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry. 1978 Jun 13;17(12):2374–2377. doi: 10.1021/bi00605a019. [DOI] [PubMed] [Google Scholar]
  7. Hartzell P. L., Zvilius G., Escalante-Semerena J. C., Donnelly M. I. Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun. 1985 Dec 31;133(3):884–890. doi: 10.1016/0006-291x(85)91218-5. [DOI] [PubMed] [Google Scholar]
  8. Marolewski A., Smith J. M., Benkovic S. J. Cloning and characterization of a new purine biosynthetic enzyme: a non-folate glycinamide ribonucleotide transformylase from E. coli. Biochemistry. 1994 Mar 8;33(9):2531–2537. doi: 10.1021/bi00175a023. [DOI] [PubMed] [Google Scholar]
  9. Nygaard P., Smith J. M. Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli. J Bacteriol. 1993 Jun;175(11):3591–3597. doi: 10.1128/jb.175.11.3591-3597.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Raemakers-Franken P. C., Bongaerts R., Fokkens R., van der Drift C., Vogels G. D. Characterization of two pterin derivatives isolated from Methanoculleus thermophilicum. Eur J Biochem. 1991 Sep 15;200(3):783–787. doi: 10.1111/j.1432-1033.1991.tb16245.x. [DOI] [PubMed] [Google Scholar]
  11. Raemakers-Franken P. C., van Elderen C. H., van der Drift C., Vogels G. D. Identification of a novel tatiopterin derivative in Methanogenium tationis. Biofactors. 1991 Jun;3(2):127–130. [PubMed] [Google Scholar]
  12. White R. H. Biosynthesis of methanopterin. Biochemistry. 1996 Mar 19;35(11):3447–3456. doi: 10.1021/bi952308m. [DOI] [PubMed] [Google Scholar]
  13. White R. H. Distribution of folates and modified folates in extremely thermophilic bacteria. J Bacteriol. 1991 Mar;173(6):1987–1991. doi: 10.1128/jb.173.6.1987-1991.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. White R. H. Structures of the modified folates in the extremely thermophilic archaebacterium Thermococcus litoralis. J Bacteriol. 1993 Jun;175(11):3661–3663. doi: 10.1128/jb.175.11.3661-3663.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. White R. H. Structures of the modified folates in the thermophilic archaebacteria Pyrococcus furiosus. Biochemistry. 1993 Jan 26;32(3):745–753. doi: 10.1021/bi00054a003. [DOI] [PubMed] [Google Scholar]
  16. Zhou D., White R. H. 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane, a structural component of the modified folate in Sulfolobus solfataricus. J Bacteriol. 1992 Jul;174(14):4576–4582. doi: 10.1128/jb.174.14.4576-4582.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zirngibl C., Van Dongen W., Schwörer B., Von Bünau R., Richter M., Klein A., Thauer R. K. H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. Eur J Biochem. 1992 Sep 1;208(2):511–520. doi: 10.1111/j.1432-1033.1992.tb17215.x. [DOI] [PubMed] [Google Scholar]
  18. van Beelen P., Labro J. F., Keltjens J. T., Geerts W. J., Vogels G. D., Laarhoven W. H., Guijt W., Haasnoot C. A. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur J Biochem. 1984 Mar 1;139(2):359–365. doi: 10.1111/j.1432-1033.1984.tb08014.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES