Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jun;179(11):3430–3436. doi: 10.1128/jb.179.11.3430-3436.1997

Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form.

C Hoischen 1, K Gura 1, C Luge 1, J Gumpert 1
PMCID: PMC179132  PMID: 9171384

Abstract

The cells of an L-form strain of Streptomyces hygroscopicus have been grown for 20 years without a cell wall. Their cytoplasmic membranes have high stability and an unusual structural polymorphism. To clarify the importance of the lipid components for these membrane properties, a comparative analysis has been carried out with purified membranes of L-form cells, of parent vegetative hyphal cells (N-form cells), and of protoplasts derived from the latter. The phospholipid classes and fatty acids were determined by thin-layer chromatography (TLC), two-dimensional TLC, high-performance liquid chromatography, gas chromatography, and mass spectrometry. The qualitative compositions of cardiolipin (CL), lyso-cardiolipin (LCL), phosphatidylethanolamine (PE1 and PE2), lyso-phosphatidylethanolamine (LPE), phosphatidylinositolmannoside (PIM), phosphatidic acid (PA), dilyso-cardiolipin-phosphatidylinositol (DLCL-PI), and the 13 main fatty acids were the same in the three membrane types. However, significant quantitative differences were observed in the L-form membrane. They consist of a three- to fourfold-higher content of total, extractable lipids, 20% more phospholipids, an increased content of CL and PIM, and a reduced amount of the component DLCL-PI. Furthermore, the L-form membrane is characterized by a higher content of branched anteiso 15:0 and anteiso 17:0 fatty acids compared to that of the membranes of the walled vegetative cells. These fatty acids have lower melting points than their straight and iso-branched counterparts and make the membrane more fluid. The phospholipid composition of the protoplast membrane differs quantitatively from that of the N form and the L form. Whereas the phospholipid classes are mostly similar to that of the N form, the fatty acid pattern tends to be closer to that of the L-form membrane. The membranes of both the L-form cells and the protoplasts need to be more fluid because of their spherical cell shape and higher degree of curvature compared with N-form membranes.

Full Text

The Full Text of this article is available as a PDF (328.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Batrakov S. G., Bergelson L. D. Lipids of the Streptomycettes. Structural investigation and biological interrelation a review. Chem Phys Lipids. 1978 Apr;21(1-2):1–29. doi: 10.1016/0009-3084(78)90052-x. [DOI] [PubMed] [Google Scholar]
  3. Baudler E., Gumpert J. Isolation of a protoplast-type L-form from Streptomyces hygroscopicus. Z Allg Mikrobiol. 1979;19(5):363–365. doi: 10.1002/jobm.3630190509. [DOI] [PubMed] [Google Scholar]
  4. Cohen M., Panos C. Membrane lipid composition of Streptococcus pyogenes and derived L form. Biochemistry. 1966 Jul;5(7):2385–2392. doi: 10.1021/bi00871a031. [DOI] [PubMed] [Google Scholar]
  5. Efimova T. P., Pechatnikova I. Sh, Tereshin I. M. Sostav membran Actinomyces hygroscopicus v protsesse rosta i razvitiia. Mikrobiologiia. 1977 Jul-Aug;46(4):676–682. [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. Gmeiner J., Martin H. H. Phospholipid and lipopolysaccharide in Proteus mirabilis and its stable protoplast L-form. Difference in content and fatty acid composition. Eur J Biochem. 1976 Aug 16;67(2):487–494. doi: 10.1111/j.1432-1033.1976.tb10714.x. [DOI] [PubMed] [Google Scholar]
  8. Gräfe U., Reinhardt G., Krebs D., Roth M., Noack D. Altered lipid composition in a non-differentiating derivative of Streptomyces hygroscopicus. J Gen Microbiol. 1982 Nov;128(11):2693–2698. doi: 10.1099/00221287-128-11-2693. [DOI] [PubMed] [Google Scholar]
  9. Gumpert J., Cron H., Plapp R., Niersbach H., Hoischen C. Synthesis and secretion of recombinant penicillin G acylase in bacterial L-forms. J Basic Microbiol. 1996;36(2):89–98. doi: 10.1002/jobm.3620360205. [DOI] [PubMed] [Google Scholar]
  10. Gumpert J. Growth characteristics and ultrastructure of protoplast type L-forms from streptomycetes. Z Allg Mikrobiol. 1982;22(9):617–627. doi: 10.1002/jobm.3630220903. [DOI] [PubMed] [Google Scholar]
  11. Gumpert J., Taubeneck U. Characteristic properties and biological significance of stable protoplast type L-forms. Experientia Suppl. 1983;46:227–241. doi: 10.1007/978-3-0348-6776-4_27. [DOI] [PubMed] [Google Scholar]
  12. Hayami M., Okabe A., Sasai K., Hayashi H., Kanemasa Y. Presence and synthesis of cholesterol in stable staphylococcal L-forms. J Bacteriol. 1979 Dec;140(3):859–863. doi: 10.1128/jb.140.3.859-863.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Janmey P. A. Protein regulation by phosphatidylinositol lipids. Chem Biol. 1995 Feb;2(2):61–65. doi: 10.1016/1074-5521(95)90276-7. [DOI] [PubMed] [Google Scholar]
  14. Kates M., Syz J. Y., Gosser D., Haines T. H. pH-dissociation characteristics of cardiolipin and its 2'-deoxy analogue. Lipids. 1993 Oct;28(10):877–882. doi: 10.1007/BF02537494. [DOI] [PubMed] [Google Scholar]
  15. Kroll H. P., Gmeiner J., Martin H. H. Membranes of the protoplast L-form of Proteus mirabilis. Arch Microbiol. 1980 Oct;127(3):223–229. doi: 10.1007/BF00427197. [DOI] [PubMed] [Google Scholar]
  16. Meyer H. W., Richter W., Gumpert J. Periodically curved bilayer structures observed in hyphal cells or stable L-form cells of a Streptomyces strain, and in liposomes formed by the extracted lipids. Biochim Biophys Acta. 1990 Jul 24;1026(2):171–178. doi: 10.1016/0005-2736(90)90061-r. [DOI] [PubMed] [Google Scholar]
  17. NESBITT J. A., 3rd, LENNARZ W. J. COMPARISON OF LIPIDS AND LIPOPOLYSACCHARIDE FROM THE BACILLARY AND L FORMS OF PROTEUS P18. J Bacteriol. 1965 Apr;89:1020–1025. doi: 10.1128/jb.89.4.1020-1025.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Packter N. M., Olukoshi E. R. Ultrastructural studies of neutral lipid localisation in Streptomyces. Arch Microbiol. 1995 Dec;164(6):420–427. doi: 10.1007/BF02529740. [DOI] [PubMed] [Google Scholar]
  19. Sternberg B., Gumpert J., Reinhardt G., Gawrisch K. Electron microscopic and biophysical studies of liposome membrane structures to characterize similar features of the membranes of Streptomyces hygroscopicus. Biochim Biophys Acta. 1987 Apr 9;898(2):223–230. doi: 10.1016/0005-2736(87)90041-1. [DOI] [PubMed] [Google Scholar]
  20. Ward J. B., Perkins H. R. The chemical composition of the membranes of protoplasts and L-forms of Staphylococcus aureus. Biochem J. 1968 Jan;106(2):391–400. doi: 10.1042/bj1060391. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES