Abstract
An aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646 was purified 196-fold by a combination of Mono-Q, Reactive Green 19 agarose affinity, and hydroxyapatite chromatographies. The purified enzyme runs as a single band of 140 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass was estimated to be 163 +/- 3.8 kDa by gel filtration, indicating that this enzyme is a monomeric protein. The binding of the enzyme to Reactive Green 19 agarose was Mg2+ dependent. The binding capacity was estimated to be about 0.2 mg of Reactive Green agarose per ml in the presence of 10 mM MgCl2. This enzyme can catalyze the reduction of a wide range of aryl carboxylic acids, including substituted benzoic acids, phenyl-substituted aliphatic acids, heterocyclic carboxylic acids, and polyaromatic ring carboxylic acids, to produce the corresponding aldehydes. The Km values for benzoate, ATP, and NADPH were determined to be 645 +/- 75, 29.3 +/- 3.1, and 57.3 +/- 12.5 microM, respectively. The Vmax was determined to be 0.902 +/- 0.04 micromol/min/mg of protein. Km values for (S)-(+)-alpha-methyl-4-(2-methylpropyl)-benzeneacetic acid (ibuprofen) and its (R)-(-) isomer were determined to be 155 +/- 18 and 34.5 +/- 2.5 microM, respectively. The Vmax for the (S)-(+) and (R)-(-) isomers were 1.33 and 0.15 micromol/min/mg of protein, respectively. Anthranilic acid is a competitive inhibitor with benzoic acid as a substrate, with a Ki of 261 +/- 30 microM. The N-terminal and internal amino acid sequences of a 76-kDa peptide from limited alpha-chymotrypsin digestion were determined.
Full Text
The Full Text of this article is available as a PDF (269.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Arfmann H. A., Abraham W. R. Microbial reduction of aromatic carboxylic acids. Z Naturforsch C. 1993 Jan-Feb;48(1-2):52–57. doi: 10.1515/znc-1993-1-210. [DOI] [PubMed] [Google Scholar]
- BACHMAN D. M., DRAGOON B., JOHN S. Reduction of salicylate to saligenin by Neurospora. Arch Biochem Biophys. 1960 Dec;91:326–326. doi: 10.1016/0003-9861(60)90508-7. [DOI] [PubMed] [Google Scholar]
- Betts R. E., Walters D. E., Rosazza J. P. Microbial transformations of antitumor compounds. 1. Conversion of acronycine to 9-hydroxyacronycine by Cunninghamella echinulata. J Med Chem. 1974 Jun;17(6):599–602. doi: 10.1021/jm00252a006. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chen C. S., Chen T., Shieh W. R. Metabolic stereoisomeric inversion of 2-arylpropionic acids. On the mechanism of ibuprofen epimerization in rats. Biochim Biophys Acta. 1990 Jan 29;1033(1):1–6. doi: 10.1016/0304-4165(90)90185-y. [DOI] [PubMed] [Google Scholar]
- Chen Y., Rosazza J. P. Microbial transformation of Ibuprofen by a nocardia species. Appl Environ Microbiol. 1994 Apr;60(4):1292–1296. doi: 10.1128/aem.60.4.1292-1296.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clonis Y. D., Goldfinch M. J., Lowe C. R. The interaction of yeast hexokinase with Procion Green H-4G. Biochem J. 1981 Jul 1;197(1):203–211. doi: 10.1042/bj1970203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glazer A. N. The specific binding of Biebrich Scarlet to the active site of alpha-chymotrypsin. J Biol Chem. 1967 Oct 10;242(19):4528–4533. [PubMed] [Google Scholar]
- Gross G. G. Formation and reduction of intermediate acyladenylate by aryl-aldehyde. NADP oxidoreductase from Neurospora crassa. Eur J Biochem. 1972 Dec 18;31(3):585–592. doi: 10.1111/j.1432-1033.1972.tb02569.x. [DOI] [PubMed] [Google Scholar]
- Gross G. G., Zenk M. H. Reduktion aromatischer Säuren zu Aldehyden und Alkoholen im zellfreien System. 2. Reinigung und Eigenschaften von Aryl-Alkohol: NADP-Oxidoreduktase aus Neurospora crassa. Eur J Biochem. 1969 Apr;8(3):420–425. doi: 10.1111/j.1432-1033.1969.tb00544.x. [DOI] [PubMed] [Google Scholar]
- Gross G. G., Zenk M. H. Reduktion aromatischer Säuren zu Aldehyden und Alkoholen im zellfreien system. 1. Reinigung und Eigenschaften von Aryl-Aldehyd: NADP-Oxidoreduktase aus Neurospora crassa. Eur J Biochem. 1969 Apr;8(3):413–419. doi: 10.1111/j.1432-1033.1969.tb00543.x. [DOI] [PubMed] [Google Scholar]
- Hempel J., Nicholas H., Lindahl R. Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 1993 Nov;2(11):1890–1900. doi: 10.1002/pro.5560021111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes P., Lowe C. R., Sherwood R. F. Metal ion-promoted binding of proteins to immobilized triazine dye affinity adsorbents. Biochim Biophys Acta. 1982 Jan 4;700(1):90–100. doi: 10.1016/0167-4838(82)90296-5. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- McArdell J. E., Bruton C. J., Atkinson T. The isolation of a peptide from the catalytic domain of Bacillus stearothermophilus tryptophyl-tRNA synthetase. The interaction of Brown MX-5BR with tyrosyl-tRNA synthetase. Biochem J. 1987 May 1;243(3):701–707. doi: 10.1042/bj2430701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McArdell J. E., Duffield M., Atkinson T. Probing the substrate-binding sites of aminoacyl-tRNA synthetases with the procion dye green HE-4BD. Biochem J. 1989 Mar 15;258(3):715–721. doi: 10.1042/bj2580715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perrella F. W. EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal Biochem. 1988 Nov 1;174(2):437–447. doi: 10.1016/0003-2697(88)90042-5. [DOI] [PubMed] [Google Scholar]
- RAMAN T. S., SHANMUGASUNDARAM E. R. Metabolism of some aromatic acids by Aspergillus niger. J Bacteriol. 1962 Dec;84:1339–1340. doi: 10.1128/jb.84.6.1339-1340.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riendeau D., Meighen E. Evidence for a fatty acid reductase catalyzing the synthesis of aldehydes for the bacterial bioluminescent reaction. Resolution from luciferase and dependence on fatty acids. J Biol Chem. 1979 Aug 25;254(16):7488–7490. [PubMed] [Google Scholar]
- Rodriguez A., Meighen E. Fatty acyl-AMP as an intermediate in fatty acid reduction to aldehyde in luminescent bacteria. J Biol Chem. 1985 Jan 25;260(2):771–774. [PubMed] [Google Scholar]
- Small D. A., Lowe C. R., Atkinson T., Bruton C. J. Affinity labelling of enzymes with triazine dyes. Isolation of a peptide in the catalytic domain of horse-liver alcohol dehydrogenase using Procion blue MX-R as a structural probe. Eur J Biochem. 1982 Nov;128(1):119–123. [PubMed] [Google Scholar]
- Stachow C. S., Stevenson I. L., Day D. Purification and properties of nicotinamide adenine dinucleotide phosphate-specific benzaldehyde dehydrogenase from Pseudomonas. J Biol Chem. 1967 Nov 25;242(22):5294–5300. [PubMed] [Google Scholar]
- White H., Strobl G., Feicht R., Simon H. Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur J Biochem. 1989 Sep 1;184(1):89–96. doi: 10.1111/j.1432-1033.1989.tb14993.x. [DOI] [PubMed] [Google Scholar]