Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jun;179(11):3482–3487. doi: 10.1128/jb.179.11.3482-3487.1997

Purification, characterization, and properties of an aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646.

T Li 1, J P Rosazza 1
PMCID: PMC179138  PMID: 9171390

Abstract

An aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646 was purified 196-fold by a combination of Mono-Q, Reactive Green 19 agarose affinity, and hydroxyapatite chromatographies. The purified enzyme runs as a single band of 140 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass was estimated to be 163 +/- 3.8 kDa by gel filtration, indicating that this enzyme is a monomeric protein. The binding of the enzyme to Reactive Green 19 agarose was Mg2+ dependent. The binding capacity was estimated to be about 0.2 mg of Reactive Green agarose per ml in the presence of 10 mM MgCl2. This enzyme can catalyze the reduction of a wide range of aryl carboxylic acids, including substituted benzoic acids, phenyl-substituted aliphatic acids, heterocyclic carboxylic acids, and polyaromatic ring carboxylic acids, to produce the corresponding aldehydes. The Km values for benzoate, ATP, and NADPH were determined to be 645 +/- 75, 29.3 +/- 3.1, and 57.3 +/- 12.5 microM, respectively. The Vmax was determined to be 0.902 +/- 0.04 micromol/min/mg of protein. Km values for (S)-(+)-alpha-methyl-4-(2-methylpropyl)-benzeneacetic acid (ibuprofen) and its (R)-(-) isomer were determined to be 155 +/- 18 and 34.5 +/- 2.5 microM, respectively. The Vmax for the (S)-(+) and (R)-(-) isomers were 1.33 and 0.15 micromol/min/mg of protein, respectively. Anthranilic acid is a competitive inhibitor with benzoic acid as a substrate, with a Ki of 261 +/- 30 microM. The N-terminal and internal amino acid sequences of a 76-kDa peptide from limited alpha-chymotrypsin digestion were determined.

Full Text

The Full Text of this article is available as a PDF (269.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Arfmann H. A., Abraham W. R. Microbial reduction of aromatic carboxylic acids. Z Naturforsch C. 1993 Jan-Feb;48(1-2):52–57. doi: 10.1515/znc-1993-1-210. [DOI] [PubMed] [Google Scholar]
  3. BACHMAN D. M., DRAGOON B., JOHN S. Reduction of salicylate to saligenin by Neurospora. Arch Biochem Biophys. 1960 Dec;91:326–326. doi: 10.1016/0003-9861(60)90508-7. [DOI] [PubMed] [Google Scholar]
  4. Betts R. E., Walters D. E., Rosazza J. P. Microbial transformations of antitumor compounds. 1. Conversion of acronycine to 9-hydroxyacronycine by Cunninghamella echinulata. J Med Chem. 1974 Jun;17(6):599–602. doi: 10.1021/jm00252a006. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Chen C. S., Chen T., Shieh W. R. Metabolic stereoisomeric inversion of 2-arylpropionic acids. On the mechanism of ibuprofen epimerization in rats. Biochim Biophys Acta. 1990 Jan 29;1033(1):1–6. doi: 10.1016/0304-4165(90)90185-y. [DOI] [PubMed] [Google Scholar]
  7. Chen Y., Rosazza J. P. Microbial transformation of Ibuprofen by a nocardia species. Appl Environ Microbiol. 1994 Apr;60(4):1292–1296. doi: 10.1128/aem.60.4.1292-1296.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clonis Y. D., Goldfinch M. J., Lowe C. R. The interaction of yeast hexokinase with Procion Green H-4G. Biochem J. 1981 Jul 1;197(1):203–211. doi: 10.1042/bj1970203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glazer A. N. The specific binding of Biebrich Scarlet to the active site of alpha-chymotrypsin. J Biol Chem. 1967 Oct 10;242(19):4528–4533. [PubMed] [Google Scholar]
  10. Gross G. G. Formation and reduction of intermediate acyladenylate by aryl-aldehyde. NADP oxidoreductase from Neurospora crassa. Eur J Biochem. 1972 Dec 18;31(3):585–592. doi: 10.1111/j.1432-1033.1972.tb02569.x. [DOI] [PubMed] [Google Scholar]
  11. Gross G. G., Zenk M. H. Reduktion aromatischer Säuren zu Aldehyden und Alkoholen im zellfreien System. 2. Reinigung und Eigenschaften von Aryl-Alkohol: NADP-Oxidoreduktase aus Neurospora crassa. Eur J Biochem. 1969 Apr;8(3):420–425. doi: 10.1111/j.1432-1033.1969.tb00544.x. [DOI] [PubMed] [Google Scholar]
  12. Gross G. G., Zenk M. H. Reduktion aromatischer Säuren zu Aldehyden und Alkoholen im zellfreien system. 1. Reinigung und Eigenschaften von Aryl-Aldehyd: NADP-Oxidoreduktase aus Neurospora crassa. Eur J Biochem. 1969 Apr;8(3):413–419. doi: 10.1111/j.1432-1033.1969.tb00543.x. [DOI] [PubMed] [Google Scholar]
  13. Hempel J., Nicholas H., Lindahl R. Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 1993 Nov;2(11):1890–1900. doi: 10.1002/pro.5560021111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hughes P., Lowe C. R., Sherwood R. F. Metal ion-promoted binding of proteins to immobilized triazine dye affinity adsorbents. Biochim Biophys Acta. 1982 Jan 4;700(1):90–100. doi: 10.1016/0167-4838(82)90296-5. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. McArdell J. E., Bruton C. J., Atkinson T. The isolation of a peptide from the catalytic domain of Bacillus stearothermophilus tryptophyl-tRNA synthetase. The interaction of Brown MX-5BR with tyrosyl-tRNA synthetase. Biochem J. 1987 May 1;243(3):701–707. doi: 10.1042/bj2430701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McArdell J. E., Duffield M., Atkinson T. Probing the substrate-binding sites of aminoacyl-tRNA synthetases with the procion dye green HE-4BD. Biochem J. 1989 Mar 15;258(3):715–721. doi: 10.1042/bj2580715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perrella F. W. EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal Biochem. 1988 Nov 1;174(2):437–447. doi: 10.1016/0003-2697(88)90042-5. [DOI] [PubMed] [Google Scholar]
  19. RAMAN T. S., SHANMUGASUNDARAM E. R. Metabolism of some aromatic acids by Aspergillus niger. J Bacteriol. 1962 Dec;84:1339–1340. doi: 10.1128/jb.84.6.1339-1340.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Riendeau D., Meighen E. Evidence for a fatty acid reductase catalyzing the synthesis of aldehydes for the bacterial bioluminescent reaction. Resolution from luciferase and dependence on fatty acids. J Biol Chem. 1979 Aug 25;254(16):7488–7490. [PubMed] [Google Scholar]
  21. Rodriguez A., Meighen E. Fatty acyl-AMP as an intermediate in fatty acid reduction to aldehyde in luminescent bacteria. J Biol Chem. 1985 Jan 25;260(2):771–774. [PubMed] [Google Scholar]
  22. Small D. A., Lowe C. R., Atkinson T., Bruton C. J. Affinity labelling of enzymes with triazine dyes. Isolation of a peptide in the catalytic domain of horse-liver alcohol dehydrogenase using Procion blue MX-R as a structural probe. Eur J Biochem. 1982 Nov;128(1):119–123. [PubMed] [Google Scholar]
  23. Stachow C. S., Stevenson I. L., Day D. Purification and properties of nicotinamide adenine dinucleotide phosphate-specific benzaldehyde dehydrogenase from Pseudomonas. J Biol Chem. 1967 Nov 25;242(22):5294–5300. [PubMed] [Google Scholar]
  24. White H., Strobl G., Feicht R., Simon H. Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur J Biochem. 1989 Sep 1;184(1):89–96. doi: 10.1111/j.1432-1033.1989.tb14993.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES