Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jun;179(11):3541–3548. doi: 10.1128/jb.179.11.3541-3548.1997

Porin polypeptide contributes to surface charge of gonococci.

J Swanson 1, D Dorward 1, L Lubke 1, D Kao 1
PMCID: PMC179146  PMID: 9171398

Abstract

Each strain of Neisseria gonorrhoeae elaborates a single porin polypeptide, with the porins expressed by different strains comprising two general classes, Por1A and Por1B. In the outer membrane, each porin molecule folds into 16 membrane-spanning beta-strands joined by top- and bottom-loop domains. Por1A and Por1B have similar membrane-spanning regions, but the eight surface-exposed top loops (I to VIII) differ in length and sequence. To determine whether porins, and especially their top loop domains, contribute to bacterial cell surface charge, strain MS11 gonococci that were identical except for expressing a recombinant Por1A, Por1B, or mosaic Por1A-1B polypeptide were compared by whole-cell electrophoresis. These porin variants displayed different electrophoretic mobilities that correlated with the net numbers of charged amino acids within surface-exposed loops of their respective porin polypeptides. The susceptibilities of porin variants to polyanionic sulfated polymers correlated roughly with gonococcal surface charge; those porin variants with diminished surface negativity showed increased sensitivity to the polyanionic sulfated compounds. These observations indicate that porin polypeptides in situ contribute to the surface charge of gonococci, and they suggest that the bacterium's interactions with large sulfated compounds are thereby affected.

Full Text

The Full Text of this article is available as a PDF (653.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba M., Schols D., De Clercq E., Pauwels R., Nagy M., Györgyi-Edelényi J., Löw M., Görög S. Novel sulfated polymers as highly potent and selective inhibitors of human immunodeficiency virus replication and giant cell formation. Antimicrob Agents Chemother. 1990 Jan;34(1):134–138. doi: 10.1128/aac.34.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bayer M. E., Sloyer J. L., Jr The electrophoretic mobility of gram-negative and gram-positive bacteria: an electrokinetic analysis. J Gen Microbiol. 1990 May;136(5):867–874. doi: 10.1099/00221287-136-5-867. [DOI] [PubMed] [Google Scholar]
  3. Blake M. S., Gotschlich E. C., Swanson J. Effects of proteolytic enzymes on the outer membrane proteins of Neisseria gonorrhoeae. Infect Immun. 1981 Jul;33(1):212–222. doi: 10.1128/iai.33.1.212-222.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buchanan T. M., Hildebrandt J. F. Antigen-specific serotyping of Neisseria gonorrhoeae: characterization based upon principal outer membrane protein. Infect Immun. 1981 Jun;32(3):985–994. doi: 10.1128/iai.32.3.985-994.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Butt N. J., Virji M., Vayreda F., Lambden P. R., Heckels J. E. Gonococcal outer-membrane protein PIB: comparative sequence analysis and localization of epitopes which are recognized by type-specific and cross-reacting monoclonal antibodies. J Gen Microbiol. 1990 Nov;136(11):2165–2172. doi: 10.1099/00221287-136-11-2165. [DOI] [PubMed] [Google Scholar]
  6. Bygdeman S. M., Mårdh P. A., Sandström E. G. Susceptibility of Neisseria gonorrhoeae to rifampicin and thiamphenicol: correlation with protein I antigenic determinants. Sex Transm Dis. 1984 Oct-Dec;11(4 Suppl):366–370. doi: 10.1097/00007435-198410001-00012. [DOI] [PubMed] [Google Scholar]
  7. Cannon J. G., Buchanan T. M., Sparling P. F. Confirmation of association of protein I serotype of Neisseria gonorrhoeae with ability to cause disseminated infection. Infect Immun. 1983 May;40(2):816–819. doi: 10.1128/iai.40.2.816-819.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carbonetti N. H., Simnad V. I., Seifert H. S., So M., Sparling P. F. Genetics of protein I of Neisseria gonorrhoeae: construction of hybrid porins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6841–6845. doi: 10.1073/pnas.85.18.6841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carbonetti N. H., Sparling P. F. Molecular cloning and characterization of the structural gene for protein I, the major outer membrane protein of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9084–9088. doi: 10.1073/pnas.84.24.9084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carbonetti N., Simnad V., Elkins C., Sparling P. F. Construction of isogenic gonococci with variable porin structure: effects on susceptibility to human serum and antibiotics. Mol Microbiol. 1990 Jun;4(6):1009–1018. doi: 10.1111/j.1365-2958.1990.tb00673.x. [DOI] [PubMed] [Google Scholar]
  11. Cardin A. D., Demeter D. A., Weintraub H. J., Jackson R. L. Molecular design and modeling of protein-heparin interactions. Methods Enzymol. 1991;203:556–583. doi: 10.1016/0076-6879(91)03030-k. [DOI] [PubMed] [Google Scholar]
  12. Chen T., Belland R. J., Wilson J., Swanson J. Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparan sulfate. J Exp Med. 1995 Aug 1;182(2):511–517. doi: 10.1084/jem.182.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen T., Swanson J., Wilson J., Belland R. J. Heparin protects Opa+ Neisseria gonorrhoeae from the bactericidal action of normal human serum. Infect Immun. 1995 May;63(5):1790–1795. doi: 10.1128/iai.63.5.1790-1795.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Duim B., Dankert J., Jansen H. M., van Alphen L. Genetic analysis of the diversity in outer membrane protein P2 of non-encapsulated Haemophilus influenzae. Microb Pathog. 1993 Jun;14(6):451–462. doi: 10.1006/mpat.1993.1044. [DOI] [PubMed] [Google Scholar]
  15. Elkins C., Barkley K. B., Carbonetti N. H., Coimbre A. J., Sparling P. F. Immunobiology of purified recombinant outer membrane porin protein I of Neisseria gonorrhoeae. Mol Microbiol. 1994 Dec;14(5):1059–1075. doi: 10.1111/j.1365-2958.1994.tb01339.x. [DOI] [PubMed] [Google Scholar]
  16. Elkins C., Carbonetti N. H., Varela V. A., Stirewalt D., Klapper D. G., Sparling P. F. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol Microbiol. 1992 Sep;6(18):2617–2628. doi: 10.1111/j.1365-2958.1992.tb01439.x. [DOI] [PubMed] [Google Scholar]
  17. Fletcher J. N., Zak K., Virji M., Heckels J. E. Monoclonal antibodies to gonococcal outer membrane protein I: location of a conserved epitope on protein IB. J Gen Microbiol. 1986 Jun;132(6):1611–1620. doi: 10.1099/00221287-132-6-1611. [DOI] [PubMed] [Google Scholar]
  18. Gill M. J., Jayamohan J., Lessing M. P., Ison C. A. Naturally occurring PIA/PIB hybrids of Neisseria gonorrhoeae. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):161–166. doi: 10.1111/j.1574-6968.1994.tb06883.x. [DOI] [PubMed] [Google Scholar]
  19. Gotschlich E. C., Seiff M. E., Blake M. S., Koomey M. Porin protein of Neisseria gonorrhoeae: cloning and gene structure. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8135–8139. doi: 10.1073/pnas.84.22.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heckels J. E., Blackett B., Everson J. S., Ward M. E. The influence of surface charge on the attachment of Neisseria gonorrhoeae to human cells. J Gen Microbiol. 1976 Oct;96(2):359–364. doi: 10.1099/00221287-96-2-359. [DOI] [PubMed] [Google Scholar]
  21. Heckels J. E. The surface of Neisseria gonorrhoeae: isolation of the major components of the outer membrane. J Gen Microbiol. 1977 Apr;99(2):333–341. doi: 10.1099/00221287-99-2-333. [DOI] [PubMed] [Google Scholar]
  22. Hildebrandt J. F., Mayer L. W., Wang S. P., Buchanan T. M. Neisseria gonorrhoeae acquire a new principal outer-membrane protein when transformed to resistance to serum bactericidal activity. Infect Immun. 1978 Apr;20(1):267–272. doi: 10.1128/iai.20.1.267-272.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jeanteur D., Lakey J. H., Pattus F. The bacterial porin superfamily: sequence alignment and structure prediction. Mol Microbiol. 1991 Sep;5(9):2153–2164. doi: 10.1111/j.1365-2958.1991.tb02145.x. [DOI] [PubMed] [Google Scholar]
  24. Johnston K. H., Gotschlich E. C. Isolation and characterization of the outer membrane of Neisseria gonorrhoeae. J Bacteriol. 1974 Jul;119(1):250–257. doi: 10.1128/jb.119.1.250-257.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Karshikoff A., Spassov V., Cowan S. W., Ladenstein R., Schirmer T. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol. 1994 Jul 22;240(4):372–384. doi: 10.1006/jmbi.1994.1451. [DOI] [PubMed] [Google Scholar]
  26. Kazatchkine M. D., Fearon D. T., Silbert J. E., Austen K. F. Surface-associated heparin inhibits zymosan-induced activation of the human alternative complement pathway by augmenting the regulatory action of the control proteins on particle-bound C3b. J Exp Med. 1979 Nov 1;150(5):1202–1215. doi: 10.1084/jem.150.5.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Knapp J. S., Tam M. R., Nowinski R. C., Holmes K. K., Sandström E. G. Serological classification of Neisseria gonorrhoeae with use of monoclonal antibodies to gonococcal outer membrane protein I. J Infect Dis. 1984 Jul;150(1):44–48. doi: 10.1093/infdis/150.1.44. [DOI] [PubMed] [Google Scholar]
  28. Mee B. J., Thomas H., Cooke S. J., Lambden P. R., Heckels J. E. Structural comparison and epitope analysis of outer-membrane protein PIA from strains of Neisseria gonorrhoeae with differing serovar specificities. J Gen Microbiol. 1993 Nov;139(11):2613–2620. doi: 10.1099/00221287-139-11-2613. [DOI] [PubMed] [Google Scholar]
  29. Meri S., Pangburn M. K. Discrimination between activators and nonactivators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc Natl Acad Sci U S A. 1990 May;87(10):3982–3986. doi: 10.1073/pnas.87.10.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Meri S., Pangburn M. K. Regulation of alternative pathway complement activation by glycosaminoglycans: specificity of the polyanion binding site on factor H. Biochem Biophys Res Commun. 1994 Jan 14;198(1):52–59. doi: 10.1006/bbrc.1994.1008. [DOI] [PubMed] [Google Scholar]
  31. Mozes N., Léonard A. J., Rouxhet P. G. On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity. Biochim Biophys Acta. 1988 Nov 22;945(2):324–334. doi: 10.1016/0005-2736(88)90495-6. [DOI] [PubMed] [Google Scholar]
  32. Pluschke G., Mayden J., Achtman M., Levine R. P. Role of the capsule and the O antigen in resistance of O18:K1 Escherichia coli to complement-mediated killing. Infect Immun. 1983 Dec;42(3):907–913. doi: 10.1128/iai.42.3.907-913.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Poh C. L., Lau Q. C., Chow V. T. Differentiation of Neisseria gonorrhoeae IB-3 and IB-7 serovars by direct sequencing of protein IB gene and pulsed-field gel electrophoresis. J Med Microbiol. 1995 Sep;43(3):201–207. doi: 10.1099/00222615-43-3-201. [DOI] [PubMed] [Google Scholar]
  34. Rostand K. S., Esko J. D. Microbial adherence to and invasion through proteoglycans. Infect Immun. 1997 Jan;65(1):1–8. doi: 10.1128/iai.65.1.1-8.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sackmann E. The seventh Datta Lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994 Jun 6;346(1):3–16. doi: 10.1016/0014-5793(94)00484-6. [DOI] [PubMed] [Google Scholar]
  36. Shieh M. T., WuDunn D., Montgomery R. I., Esko J. D., Spear P. G. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol. 1992 Mar;116(5):1273–1281. doi: 10.1083/jcb.116.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Virji M., Zak K., Heckels J. E. Monoclonal antibodies to gonococcal outer membrane protein IB: use in investigation of the potential protective effect of antibodies directed against conserved and type-specific epitopes. J Gen Microbiol. 1986 Jun;132(6):1621–1629. doi: 10.1099/00221287-132-6-1621. [DOI] [PubMed] [Google Scholar]
  38. Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. Molecular architecture and electrostatic properties of a bacterial porin. Science. 1991 Dec 13;254(5038):1627–1630. doi: 10.1126/science.1721242. [DOI] [PubMed] [Google Scholar]
  39. Weiss M. S., Schulz G. E. Structure of porin refined at 1.8 A resolution. J Mol Biol. 1992 Sep 20;227(2):493–509. doi: 10.1016/0022-2836(92)90903-w. [DOI] [PubMed] [Google Scholar]
  40. Young J. D., Blake M., Mauro A., Cohn Z. A. Properties of the major outer membrane protein from Neisseria gonorrhoeae incorporated into model lipid membranes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3831–3835. doi: 10.1073/pnas.80.12.3831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhang J. P., Stephens R. S. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell. 1992 May 29;69(5):861–869. doi: 10.1016/0092-8674(92)90296-o. [DOI] [PubMed] [Google Scholar]
  42. van Putten J. P., Paul S. M. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 1995 May 15;14(10):2144–2154. doi: 10.1002/j.1460-2075.1995.tb07208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van der Ley P., Heckels J. E., Virji M., Hoogerhout P., Poolman J. T. Topology of outer membrane porins in pathogenic Neisseria spp. Infect Immun. 1991 Sep;59(9):2963–2971. doi: 10.1128/iai.59.9.2963-2971.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES