Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jun;179(11):3555–3560. doi: 10.1128/jb.179.11.3555-3560.1997

L-allo-threonine aldolase from Aeromonas jandaei DK-39: gene cloning, nucleotide sequencing, and identification of the pyridoxal 5'-phosphate-binding lysine residue by site-directed mutagenesis.

J Q Liu 1, T Dairi 1, M Kataoka 1, S Shimizu 1, H Yamada 1
PMCID: PMC179148  PMID: 9171400

Abstract

We have isolated the gene encoding L-allo-threonine aldolase (L-allo-TA) from Aeromonas jandaei DK-39, a pyridoxal 5'-phosphate (PLP)-dependent enzyme that stereospecifically catalyzes the interconversion of L-allo-threonine and glycine. The gene contains an open reading frame consisting of 1,014 nucleotides corresponding to 338 amino acid residues. The protein molecular weight was estimated to be 36,294, which is in good agreement with the subunit molecular weight of the enzyme determined by polyacrylamide gel electrophoresis. The enzyme was overexpressed in recombinant Escherichia coli cells and purified to homogeneity by one hydrophobic column chromatography step. The predicted amino acid sequence showed no significant similarity to those of the currently known PLP-dependent enzymes but displayed 40 and 41% identity with those of the hypothetical GLY1 protein of Saccharomyces cerevisiae and the GLY1-like protein of Caenorhabditis elegans, respectively. Accordingly, L-allo-TA might represent a new type of PLP-dependent enzyme. To determine the PLP-binding site of the enzyme, all of the three conserved lysine residues of L-allo-TA were replaced by alanine by site-directed mutagenesis. The purified mutant enzymes, K51A and K224A, showed properties similar to those of the wild type, while the mutant enzyme K199A was catalytically inactive, with corresponding disappearance of the absorption maximum at 420 nm. Thus, Lys199 of L-allo-TA probably functions as an essential catalytic residue forming an internal Schiff base with PLP of the enzyme to catalyze the reversible aldol reaction.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander F. W., Sandmeier E., Mehta P. K., Christen P. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem. 1994 Feb 1;219(3):953–960. doi: 10.1111/j.1432-1033.1994.tb18577.x. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Angelaccio S., Pascarella S., Fattori E., Bossa F., Strong W., Schirch V. Serine hydroxymethyltransferase: origin of substrate specificity. Biochemistry. 1992 Jan 14;31(1):155–162. doi: 10.1021/bi00116a023. [DOI] [PubMed] [Google Scholar]
  4. Bell S. C., Turner J. M. Bacterial catabolism of threonine. Threonine degradation initiated by L-threonine acetaldehyde-lyase (aldolase) in species of Pseudomonas. Biochem J. 1977 Aug 15;166(2):209–216. doi: 10.1042/bj1660209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diaz-Diaz M., Ward O. P., Honek J., Lajoie G. Enzymes from Pseudomonas sp. strain NCIB 11097 participating in biotransformation of acetaldehyde and glycine to threonine isomers. Can J Microbiol. 1995 Apr-May;41(4-5):438–443. doi: 10.1139/m95-059. [DOI] [PubMed] [Google Scholar]
  6. Ishikawa K., Kaneko E., Ichiyama A. Pyridoxal 5'-phosphate binding of a recombinant rat serine: pyruvate/alanine:glyoxylate aminotransferase. J Biochem. 1996 May;119(5):970–978. doi: 10.1093/oxfordjournals.jbchem.a021337. [DOI] [PubMed] [Google Scholar]
  7. Jolad S. D., Hoffmann J. J., Torrance S. J., Wiedhopf R. M., Cole J. R., Arora S. K., Bates R. B., Gargiulo R. L., Kriek G. R. Bouvardin and deoxybouvardin, antitumor cyclic hexapeptides from Bouvardia ternifolia (Rubiaceae). J Am Chem Soc. 1977 Nov 23;99(24):8040–8044. doi: 10.1021/ja00466a043. [DOI] [PubMed] [Google Scholar]
  8. KARASEK M. A., GREENBERG D. M. Studies on the properties of threonine aldolases. J Biol Chem. 1957 Jul;227(1):191–205. [PubMed] [Google Scholar]
  9. Kobayashi Y., Kaufman D. L., Tobin A. J. Glutamic acid decarboxylase cDNA: nucleotide sequence encoding an enzymatically active fusion protein. J Neurosci. 1987 Sep;7(9):2768–2772. doi: 10.1523/JNEUROSCI.07-09-02768.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kumagai H., Nagate T., Yoshida H., Yamada H. Threonine aldolase from Candida humicola. II. Purification, crystallization and properties. Biochim Biophys Acta. 1972 Mar 8;258(3):779–790. doi: 10.1016/0005-2744(72)90179-9. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  12. McNeil J. B., McIntosh E. M., Taylor B. V., Zhang F. R., Tang S., Bognar A. L. Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J Biol Chem. 1994 Mar 25;269(12):9155–9165. [PubMed] [Google Scholar]
  13. Morris J. G. Utilization of L-threnonine by a pseudomonad: a catabolic role for L-threonine aldolase. Biochem J. 1969 Nov;115(3):603–605. doi: 10.1042/bj1150603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PAZ M. A., BLUMENFELD O. O., ROJKIND M., HENSON E., FURFINE C., GALLOP P. M. DETERMINATION OF CARBONYL COMPOUNDS WITH N-METHYL BENZOTHIAZOLONE HYDRAZONE. Arch Biochem Biophys. 1965 Mar;109:548–559. doi: 10.1016/0003-9861(65)90400-5. [DOI] [PubMed] [Google Scholar]
  15. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Poulin R., Lu L., Ackermann B., Bey P., Pegg A. E. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem. 1992 Jan 5;267(1):150–158. [PubMed] [Google Scholar]
  17. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  18. Schirch L., Gross T. Serine transhydroxymethylase. Identification as the threonine and allothreonine aldolases. J Biol Chem. 1968 Nov 10;243(21):5651–5655. [PubMed] [Google Scholar]
  19. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  20. Stover P., Zamora M., Shostak K., Gautam-Basak M., Schirch V. Escherichia coli serine hydroxymethyltransferase. The role of histidine 228 in determining reaction specificity. J Biol Chem. 1992 Sep 5;267(25):17679–17687. [PubMed] [Google Scholar]
  21. Tanizawa K., Masu Y., Asano S., Tanaka H., Soda K. Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination. J Biol Chem. 1989 Feb 15;264(5):2445–2449. [PubMed] [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vaaler G. L., Snell E. E. Pyridoxal 5'-phosphate dependent histidine decarboxylase: overproduction, purification, biosynthesis of soluble site-directed mutant proteins, and replacement of conserved residues. Biochemistry. 1989 Sep 5;28(18):7306–7313. doi: 10.1021/bi00444a024. [DOI] [PubMed] [Google Scholar]
  24. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
  25. Yamada H., Kumagai H., Nagate T., Yoshida H. Crystalline threonine aldolase from Candida humicola. Biochem Biophys Res Commun. 1970 Apr 8;39(1):53–58. doi: 10.1016/0006-291x(70)90756-4. [DOI] [PubMed] [Google Scholar]
  26. Zack D. J., Stempniak M., Wong A. L., Weisbart R. H. Localization of an Fc-binding reactivity to the constant region of human IgG4. Implications for the pathogenesis of rheumatoid arthritis. J Immunol. 1995 Nov 15;155(10):5057–5063. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES