Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jun;179(11):3619–3624. doi: 10.1128/jb.179.11.3619-3624.1997

Growth phase-dependent transcription of the Streptomyces ramocissimus tuf1 gene occurs from two promoters.

L N Tieleman 1, G P van Wezel 1, M J Bibb 1, B Kraal 1
PMCID: PMC179156  PMID: 9171408

Abstract

The str operon of Streptomyces ramocissimus contains the genes for ribosomal proteins S12 (rpsL) and S7 (rpsG) and for the polypeptide chain elongation factors G (EF-G) (fus) and Tu (EF-Tu) (tuf). This kirromycin producer contains three tuf or tuf-like genes; tuf1 encodes the regular EF-Tu and is located immediately downstream of fus. In vivo and in vitro transcription analysis revealed a transcription start site directly upstream of S. ramocissimus tuf1, in addition to the operon promoter rpsLp. Transcription from these promoters appeared to be growth phase dependent, diminishing drastically upon entry into stationary phase and at the onset of production of the EF-Tu-targeted antibiotic kirromycin. In surface-grown cultures, a second round of tuf1 transcription, coinciding with aerial mycelium formation and kirromycin production, was observed. The tuf1-specific promoter (tuf1p) was located in the intercistronic region between fus and tuf1 by high-resolution S1 mapping, in vitro transcription, and in vivo promoter probing. During logarithmic growth, the tuf1p and rpsLp transcripts are present at comparable levels. In contrast to Escherichia coli, which has two almost identical tuf genes, the gram-positive S. ramocissimus contains only tuf1 for its regular EF-Tu. High levels of EF-Tu may therefore be achieved by the compensatory activity of tuf1p.

Full Text

The Full Text of this article is available as a PDF (715.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderson G., Ritchie D. A., Cappellano C., Cool R. H., Ivanova N. M., Huddleston A. S., Flaxman C. S., Kristufek V., Lounes A. Physiology and genetics of antibiotic production and resistance. Res Microbiol. 1993 Oct;144(8):665–672. doi: 10.1016/0923-2508(93)90072-a. [DOI] [PubMed] [Google Scholar]
  2. An G., Friesen J. D. The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli. Gene. 1980 Dec;12(1-2):33–39. doi: 10.1016/0378-1119(80)90013-x. [DOI] [PubMed] [Google Scholar]
  3. An G., Lee J. S., Friesen J. D. Evidence for an internal promoter preceding tufA in the str operon of Escherichia coli. J Bacteriol. 1982 Feb;149(2):548–553. doi: 10.1128/jb.149.2.548-553.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourn W. R., Babb B. Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res. 1995 Sep 25;23(18):3696–3703. doi: 10.1093/nar/23.18.3696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown K. L., Wood S., Buttner M. J. Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2); renaturation of a sigma subunit using GroEL. Mol Microbiol. 1992 May;6(9):1133–1139. doi: 10.1111/j.1365-2958.1992.tb01551.x. [DOI] [PubMed] [Google Scholar]
  6. Buttner M. J. RNA polymerase heterogeneity in Streptomyces coelicolor A3(2). Mol Microbiol. 1989 Nov;3(11):1653–1659. doi: 10.1111/j.1365-2958.1989.tb00151.x. [DOI] [PubMed] [Google Scholar]
  7. Chakraburtty R., White J., Takano E., Bibb M. Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Mol Microbiol. 1996 Jan;19(2):357–368. doi: 10.1046/j.1365-2958.1996.390919.x. [DOI] [PubMed] [Google Scholar]
  8. Clayton T. M., Bibb M. J. Streptomyces promoter-probe plasmids that utilise the xylE gene of Pseudomonas putida. Nucleic Acids Res. 1990 Feb 25;18(4):1077–1077. doi: 10.1093/nar/18.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Douglas S. E. Unusual organization of a ribosomal protein operon in the plastid genome of Cryptomonas phi: evolutionary considerations. Curr Genet. 1991 Apr;19(4):289–294. doi: 10.1007/BF00355057. [DOI] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Filer D., Furano A. V. Duplication of the tuf gene, which encodes peptide chain elongation factor Tu, is widespread in Gram-negative bacteria. J Bacteriol. 1981 Dec;148(3):1006–1011. doi: 10.1128/jb.148.3.1006-1011.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gramajo H. C., Takano E., Bibb M. J. Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol. 1993 Mar;7(6):837–845. doi: 10.1111/j.1365-2958.1993.tb01174.x. [DOI] [PubMed] [Google Scholar]
  13. Granozzi C., Billetta R., Passantino R., Sollazzo M., Puglia A. M. A breakdown in macromolecular synthesis preceding differentiation in Streptomyces coelicolor A3(2). J Gen Microbiol. 1990 Apr;136(4):713–716. doi: 10.1099/00221287-136-4-713. [DOI] [PubMed] [Google Scholar]
  14. Hughes D. Both genes for EF-Tu in Salmonella typhimurium are individually dispensable for growth. J Mol Biol. 1990 Sep 5;215(1):41–51. doi: 10.1016/S0022-2836(05)80093-2. [DOI] [PubMed] [Google Scholar]
  15. Jaskunas S. R., Lindahl L., Nomura M. Identification of two copies of the gene for the elongation factor EF-Tu in E. coli. Nature. 1975 Oct 9;257(5526):458–462. doi: 10.1038/257458a0. [DOI] [PubMed] [Google Scholar]
  16. Lechner K., Heller G., Böck A. Organization and nucleotide sequence of a transcriptional unit of Methanococcus vannielii comprising genes for protein synthesis elongation factors and ribosomal proteins. J Mol Evol. 1989 Jul;29(1):20–27. doi: 10.1007/BF02106178. [DOI] [PubMed] [Google Scholar]
  17. Lee J. S., An G., Friesen J. D., Fill N. P. Location of the tufB promoter of E. coli: cotranscription of tufB with four transfer RNA genes. Cell. 1981 Jul;25(1):251–258. doi: 10.1016/0092-8674(81)90250-6. [DOI] [PubMed] [Google Scholar]
  18. Lonetto M. A., Brown K. L., Rudd K. E., Buttner M. J. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7573–7577. doi: 10.1073/pnas.91.16.7573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene. 1992 Feb 1;111(1):61–68. doi: 10.1016/0378-1119(92)90603-m. [DOI] [PubMed] [Google Scholar]
  20. Mikulík K., Zhulanova E. Sequencing of the tuf1 gene and the phosphorylation pattern of EF-Tu1 during development and differentiation in Streptomyces collinus producing kirromycin. Biochem Biophys Res Commun. 1995 Aug 15;213(2):454–461. doi: 10.1006/bbrc.1995.2153. [DOI] [PubMed] [Google Scholar]
  21. Miller D. L. A comparison of the activities of the products of the two genes for elongation factor Tu. Mol Gen Genet. 1978 Feb 7;159(1):57–62. doi: 10.1007/BF00401748. [DOI] [PubMed] [Google Scholar]
  22. Murray M. G. Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Anal Biochem. 1986 Oct;158(1):165–170. doi: 10.1016/0003-2697(86)90605-6. [DOI] [PubMed] [Google Scholar]
  23. Post L. E., Nomura M. DNA sequences from the str operon of Escherichia coli. J Biol Chem. 1980 May 25;255(10):4660–4666. [PubMed] [Google Scholar]
  24. Sela S., Yogev D., Razin S., Bercovier H. Duplication of the tuf gene: a new insight into the phylogeny of eubacteria. J Bacteriol. 1989 Jan;171(1):581–584. doi: 10.1128/jb.171.1.581-584.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strauch E., Takano E., Baylis H. A., Bibb M. J. The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol. 1991 Feb;5(2):289–298. doi: 10.1111/j.1365-2958.1991.tb02109.x. [DOI] [PubMed] [Google Scholar]
  26. Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Summerton J., Atkins T., Bestwick R. A rapid method for preparation of bacterial plasmids. Anal Biochem. 1983 Aug;133(1):79–84. doi: 10.1016/0003-2697(83)90224-5. [DOI] [PubMed] [Google Scholar]
  28. Van Delft J. H., Schmidt D. S., Bosch L. The tRNA-tufB operon transcription termination and processing upstream from tufB. J Mol Biol. 1987 Oct 20;197(4):647–657. doi: 10.1016/0022-2836(87)90471-2. [DOI] [PubMed] [Google Scholar]
  29. Vijgenboom E., Woudt L. P., Heinstra P. W., Rietveld K., van Haarlem J., van Wezel G. P., Shochat S., Bosch L. Three tuf-like genes in the kirromycin producer Streptomyces ramocissimus. Microbiology. 1994 Apr;140(Pt 4):983–998. doi: 10.1099/00221287-140-4-983. [DOI] [PubMed] [Google Scholar]
  30. Wright F., Bibb M. J. Codon usage in the G+C-rich Streptomyces genome. Gene. 1992 Apr 1;113(1):55–65. doi: 10.1016/0378-1119(92)90669-g. [DOI] [PubMed] [Google Scholar]
  31. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  32. Yokota T., Sugisaki H., Takanami M., Kaziro Y. The nucleotide sequence of the cloned tufA gene of Escherichia coli. Gene. 1980 Dec;12(1-2):25–31. doi: 10.1016/0378-1119(80)90012-8. [DOI] [PubMed] [Google Scholar]
  33. Zengel J. M., Archer R. H., Lindahl L. The nucleotide sequence of the Escherichia coli fus gene, coding for elongation factor G. Nucleic Acids Res. 1984 Feb 24;12(4):2181–2192. doi: 10.1093/nar/12.4.2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zengel J. M., Lindahl L. A secondary promoter for elongation factor Tu synthesis in the str ribosomal protein operon of Escherichia coli. Mol Gen Genet. 1982;185(3):487–492. doi: 10.1007/BF00334145. [DOI] [PubMed] [Google Scholar]
  35. Zengel J. M., Lindahl L. Mapping of two promoters for elongation factor Tu within the structural gene for elongation factor G. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):317–322. doi: 10.1016/0167-4781(90)90188-8. [DOI] [PubMed] [Google Scholar]
  36. Zukowski M. M., Gaffney D. F., Speck D., Kauffmann M., Findeli A., Wisecup A., Lecocq J. P. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1101–1105. doi: 10.1073/pnas.80.4.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van Wezel G. P., Krab I. M., Douthwaite S., Bibb M. J., Vijgenboom E., Bosch L. Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon. Microbiology. 1994 Dec;140(Pt 12):3357–3365. doi: 10.1099/13500872-140-12-3357. [DOI] [PubMed] [Google Scholar]
  38. van Wezel G. P., Takano E., Vijgenboom E., Bosch L., Bibb M. J. The tuf3 gene of Streptomyces coelicolor A3(2) encodes an inessential elongation factor Tu that is apparently subject to positive stringent control. Microbiology. 1995 Oct;141(Pt 10):2519–2528. doi: 10.1099/13500872-141-10-2519. [DOI] [PubMed] [Google Scholar]
  39. van Wezel G. P., Woudt L. P., Vervenne R., Verdurmen M. L., Vijgenboom E., Bosch L. Cloning and sequencing of the tuf genes of Streptomyces coelicolor A3(2). Biochim Biophys Acta. 1994 Oct 18;1219(2):543–547. doi: 10.1016/0167-4781(94)90085-x. [DOI] [PubMed] [Google Scholar]
  40. van der Meide P. H., Vijgenboom E., Talens A., Bosch L. The role of EF-Tu in the expression of tufA and tufB genes. Eur J Biochem. 1983 Feb 1;130(2):397–407. doi: 10.1111/j.1432-1033.1983.tb07166.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES