Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jun;179(11):3736–3745. doi: 10.1128/jb.179.11.3736-3745.1997

Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

B Rosenthal 1, Z Mai 1, D Caplivski 1, S Ghosh 1, H de la Vega 1, T Graf 1, J Samuelson 1
PMCID: PMC179172  PMID: 9171424

Abstract

Entamoeba histolytica is an amitochondriate protozoan parasite with numerous bacterium-like fermentation enzymes including the pyruvate:ferredoxin oxidoreductase (POR), ferredoxin (FD), and alcohol dehydrogenase E (ADHE). The goal of this study was to determine whether the genes encoding these cytosolic E. histolytica fermentation enzymes might derive from a bacterium by horizontal transfer, as has previously been suggested for E. histolytica genes encoding heat shock protein 60, nicotinamide nucleotide transhydrogenase, and superoxide dismutase. In this study, the E. histolytica por gene and the adhE gene of a second amitochondriate protozoan parasite, Giardia lamblia, were sequenced, and their phylogenetic positions were estimated in relation to POR, ADHE, and FD cloned from eukaryotic and eubacterial organisms. The E. histolytica por gene encodes a 1,620-amino-acid peptide that contained conserved iron-sulfur- and thiamine pyrophosphate-binding sites. The predicted E. histolytica POR showed fewer positional identities to the POR of G. lamblia (34%) than to the POR of the enterobacterium Klebsiella pneumoniae (49%), the cyanobacterium Anabaena sp. (44%), and the protozoan Trichomonas vaginalis (46%), which targets its POR to anaerobic organelles called hydrogenosomes. Maximum-likelihood, neighbor-joining, and parsimony analyses also suggested as less likely E. histolytica POR sharing more recent common ancestry with G. lamblia POR than with POR of bacteria and the T. vaginalis hydrogenosome. The G. lamblia adhE encodes an 888-amino-acid fusion peptide with an aldehyde dehydrogenase at its amino half and an iron-dependent (class 3) ADH at its carboxy half. The predicted G. lamblia ADHE showed extensive positional identities to ADHE of Escherichia coli (49%), Clostridium acetobutylicum (44%), and E. histolytica (43%) and lesser identities to the class 3 ADH of eubacteria and yeast (19 to 36%). Phylogenetic analyses inferred a closer relationship of the E. histolytica ADHE to bacterial ADHE than to the G. lamblia ADHE. The 6-kDa FD of E. histolytica and G. lamblia were most similar to those of the archaebacterium Methanosarcina barkeri and the delta-purple bacterium Desulfovibrio desulfuricans, respectively, while the 12-kDa FD of the T. vaginalis hydrogenosome was most similar to the 12-kDa FD of gamma-purple bacterium Pseudomonas putida. E. histolytica genes (and probably G. lamblia genes) encoding fermentation enzymes therefore likely derive from bacteria by horizontal transfer, although it is not clear from which bacteria these amebic genes derive. These are the first nonorganellar fermentation enzymes of eukaryotes implicated to have derived from bacteria.

Full Text

The Full Text of this article is available as a PDF (505.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Alves A. M., Meijer W. G., Vrijbloed J. W., Dijkhuizen L. Characterization and phylogeny of the pfp gene of Amycolatopsis methanolica encoding PPi-dependent phosphofructokinase. J Bacteriol. 1996 Jan;178(1):149–155. doi: 10.1128/jb.178.1.149-155.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnold W., Rump A., Klipp W., Priefer U. B., Pühler A. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol. 1988 Oct 5;203(3):715–738. doi: 10.1016/0022-2836(88)90205-7. [DOI] [PubMed] [Google Scholar]
  4. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2241–2245. doi: 10.1093/nar/19.suppl.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bakker-Grunwald T., Wöstmann C. Entamoeba histolytica as a model for the primitive eukaryotic cell. Parasitol Today. 1993 Jan;9(1):27–31. doi: 10.1016/0169-4758(93)90161-8. [DOI] [PubMed] [Google Scholar]
  6. Bruchhaus I., Leippe M., Lioutas C., Tannich E. Unusual gene organization in the protozoan parasite Entamoeba histolytica. DNA Cell Biol. 1993 Dec;12(10):925–933. doi: 10.1089/dna.1993.12.925. [DOI] [PubMed] [Google Scholar]
  7. Bruchhaus I., Tannich E. Identification of an Entamoeba histolytica gene encoding a protein homologous to prokaryotic disulphide oxidoreductases. Mol Biochem Parasitol. 1995 Mar;70(1-2):187–191. doi: 10.1016/0166-6851(94)00214-8. [DOI] [PubMed] [Google Scholar]
  8. Bruchhaus I., Tannich E. Primary structure of the pyruvate phosphate dikinase in Entamoeba histolytica. Mol Biochem Parasitol. 1993 Nov;62(1):153–156. doi: 10.1016/0166-6851(93)90193-2. [DOI] [PubMed] [Google Scholar]
  9. Bruchhaus I., Tannich E. Purification and molecular characterization of the NAD(+)-dependent acetaldehyde/alcohol dehydrogenase from Entamoeba histolytica. Biochem J. 1994 Nov 1;303(Pt 3):743–748. doi: 10.1042/bj3030743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bui E. T., Bradley P. J., Johnson P. J. A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9651–9656. doi: 10.1073/pnas.93.18.9651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen L. B. Fluorescent labeling of mitochondria. Methods Cell Biol. 1989;29:103–123. doi: 10.1016/s0091-679x(08)60190-9. [DOI] [PubMed] [Google Scholar]
  12. Clark C. G., Roger A. J. Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6518–6521. doi: 10.1073/pnas.92.14.6518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Faulkner D. V., Jurka J. Multiple aligned sequence editor (MASE). Trends Biochem Sci. 1988 Aug;13(8):321–322. doi: 10.1016/0968-0004(88)90129-6. [DOI] [PubMed] [Google Scholar]
  14. Goodlove P. E., Cunningham P. R., Parker J., Clark D. P. Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene. 1989 Dec 21;85(1):209–214. doi: 10.1016/0378-1119(89)90483-6. [DOI] [PubMed] [Google Scholar]
  15. Gray M. W., Doolittle W. F. Has the endosymbiont hypothesis been proven? Microbiol Rev. 1982 Mar;46(1):1–42. doi: 10.1128/mr.46.1.1-42.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gray M. W. The evolutionary origins of organelles. Trends Genet. 1989 Sep;5(9):294–299. doi: 10.1016/0168-9525(89)90111-x. [DOI] [PubMed] [Google Scholar]
  17. Gupta R. S. Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol. 1995 Jan;15(1):1–11. doi: 10.1111/j.1365-2958.1995.tb02216.x. [DOI] [PubMed] [Google Scholar]
  18. Hasegawa M., Fujiwara M. Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. Mol Phylogenet Evol. 1993 Mar;2(1):1–5. doi: 10.1006/mpev.1993.1001. [DOI] [PubMed] [Google Scholar]
  19. Hashimoto T., Nakamura Y., Kamaishi T., Nakamura F., Adachi J., Okamoto K., Hasegawa M. Phylogenetic place of mitochondrion-lacking protozoan, Giardia lamblia, inferred from amino acid sequences of elongation factor 2. Mol Biol Evol. 1995 Sep;12(5):782–793. doi: 10.1093/oxfordjournals.molbev.a040256. [DOI] [PubMed] [Google Scholar]
  20. Hawkins C. F., Borges A., Perham R. N. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett. 1989 Sep 11;255(1):77–82. doi: 10.1016/0014-5793(89)81064-6. [DOI] [PubMed] [Google Scholar]
  21. Horner D. S., Hirt R. P., Kilvington S., Lloyd D., Embley T. M. Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc Biol Sci. 1996 Aug 22;263(1373):1053–1059. doi: 10.1098/rspb.1996.0155. [DOI] [PubMed] [Google Scholar]
  22. Hrdý I., Müller M. Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J Mol Evol. 1995 Sep;41(3):388–396. [PubMed] [Google Scholar]
  23. Huang M., Albach R. A., Chang K. P., Tripathi R. L., Kemp R. G. Cloning and sequencing a putative pyrophosphate-dependent phosphofructokinase gene from Entamoeba histolytica. Biochim Biophys Acta. 1995 Jan 25;1260(2):215–217. doi: 10.1016/0167-4781(94)00216-p. [DOI] [PubMed] [Google Scholar]
  24. Huber M., Garfinkel L., Gitler C., Mirelman D., Revel M., Rozenblatt S. Nucleotide sequence analysis of an Entamoeba histolytica ferredoxin gene. Mol Biochem Parasitol. 1988 Oct;31(1):27–33. doi: 10.1016/0166-6851(88)90142-9. [DOI] [PubMed] [Google Scholar]
  25. Johnson P. J., d'Oliveira C. E., Gorrell T. E., Müller M. Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichomonas vaginalis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6097–6101. doi: 10.1073/pnas.87.16.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kletzin A., Adams M. W. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol. 1996 Jan;178(1):248–257. doi: 10.1128/jb.178.1.248-257.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Köhler S., Delwiche C. F., Denny P. W., Tilney L. G., Webster P., Wilson R. J., Palmer J. D., Roos D. S. A plastid of probable green algal origin in Apicomplexan parasites. Science. 1997 Mar 7;275(5305):1485–1489. doi: 10.1126/science.275.5305.1485. [DOI] [PubMed] [Google Scholar]
  28. Lee C. C., Wu X. W., Gibbs R. A., Cook R. G., Muzny D. M., Caskey C. T. Generation of cDNA probes directed by amino acid sequence: cloning of urate oxidase. Science. 1988 Mar 11;239(4845):1288–1291. doi: 10.1126/science.3344434. [DOI] [PubMed] [Google Scholar]
  29. Lindahl R., Hempel J. Aldehyde dehydrogenases: what can be learned from a baker's dozen sequences? Adv Exp Med Biol. 1991;284:1–8. doi: 10.1007/978-1-4684-5901-2_1. [DOI] [PubMed] [Google Scholar]
  30. Little E., Bork P., Doolittle R. F. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. J Mol Evol. 1994 Dec;39(6):631–643. doi: 10.1007/BF00160409. [DOI] [PubMed] [Google Scholar]
  31. Markos A., Miretsky A., Müller M. A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis. J Mol Evol. 1993 Dec;37(6):631–643. doi: 10.1007/BF00182749. [DOI] [PubMed] [Google Scholar]
  32. Mücke U., Wohlfarth T., Fiedler U., Bäumlein H., Rücknagel K. P., König S. Pyruvate decarboxylase from Pisum sativum. Properties, nucleotide and amino acid sequences. Eur J Biochem. 1996 Apr 15;237(2):373–382. doi: 10.1111/j.1432-1033.1996.0373k.x. [DOI] [PubMed] [Google Scholar]
  33. Müller M. Energy metabolism of ancestral eukaryotes: a hypothesis based on the biochemistry of amitochondriate parasitic protists. Biosystems. 1992;28(1-3):33–40. doi: 10.1016/0303-2647(92)90005-j. [DOI] [PubMed] [Google Scholar]
  34. Müller M. The hydrogenosome. J Gen Microbiol. 1993 Dec;139(12):2879–2889. doi: 10.1099/00221287-139-12-2879. [DOI] [PubMed] [Google Scholar]
  35. Nair R. V., Bennett G. N., Papoutsakis E. T. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol. 1994 Feb;176(3):871–885. doi: 10.1128/jb.176.3.871-885.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Naud I., Vinçon M., Garin J., Gaillard J., Forest E., Jouanneau Y. Purification of a sixth ferredoxin from Rhodobacter capsulatus. Primary structure and biochemical properties. Eur J Biochem. 1994 Jun 15;222(3):933–939. doi: 10.1111/j.1432-1033.1994.tb18942.x. [DOI] [PubMed] [Google Scholar]
  37. Ravdin J. I. Amebiasis. Clin Infect Dis. 1995 Jun;20(6):1453–1466. doi: 10.1093/clinids/20.6.1453. [DOI] [PubMed] [Google Scholar]
  38. Reeves R. E. Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv Parasitol. 1984;23:105–142. doi: 10.1016/s0065-308x(08)60286-9. [DOI] [PubMed] [Google Scholar]
  39. Rodríguez M. A., Báez-Camargo M., Delgadillo D. M., Orozco E. Cloning and expression of an Entamoeba histolytica NAPD+(-)dependent alcohol dehydrogenase gene. Biochim Biophys Acta. 1996 Apr 10;1306(1):23–26. doi: 10.1016/0167-4781(96)00014-0. [DOI] [PubMed] [Google Scholar]
  40. Rodríguez M. A., Hidalgo M. E., Sánchez T., Orozco E. Cloning and characterization of the Entamoeba histolytica pyruvate: ferredoxin oxidoreductase gene. Mol Biochem Parasitol. 1996 Jun;78(1-2):273–277. doi: 10.1016/s0166-6851(96)02613-8. [DOI] [PubMed] [Google Scholar]
  41. Rozario C., Müller M. Primary structure of a putative adenylate kinase gene of Giardia lamblia. Mol Biochem Parasitol. 1995 May;71(2):279–283. doi: 10.1016/0166-6851(95)00067-b. [DOI] [PubMed] [Google Scholar]
  42. Rozario C., Smith M. W., Müller M. Primary sequence of a putative pyrophosphate-linked phosphofructokinase gene of Giardia lamblia. Biochim Biophys Acta. 1995 Jan 25;1260(2):218–222. doi: 10.1016/0167-4781(94)00217-q. [DOI] [PubMed] [Google Scholar]
  43. Schatz G. 17th Sir Hans Krebs lecture. Signals guiding proteins to their correct locations in mitochondria. Eur J Biochem. 1987 May 15;165(1):1–6. doi: 10.1111/j.1432-1033.1987.tb11186.x. [DOI] [PubMed] [Google Scholar]
  44. Smith M. W., Feng D. F., Doolittle R. F. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci. 1992 Dec;17(12):489–493. doi: 10.1016/0968-0004(92)90335-7. [DOI] [PubMed] [Google Scholar]
  45. Smith R. F., Smith T. F. Pattern-induced multi-sequence alignment (PIMA) algorithm employing secondary structure-dependent gap penalties for use in comparative protein modelling. Protein Eng. 1992 Jan;5(1):35–41. doi: 10.1093/protein/5.1.35. [DOI] [PubMed] [Google Scholar]
  46. Sogin M. L. Early evolution and the origin of eukaryotes. Curr Opin Genet Dev. 1991 Dec;1(4):457–463. doi: 10.1016/s0959-437x(05)80192-3. [DOI] [PubMed] [Google Scholar]
  47. Sogin M. L., Gunderson J. H., Elwood H. J., Alonso R. A., Peattie D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science. 1989 Jan 6;243(4887):75–77. doi: 10.1126/science.2911720. [DOI] [PubMed] [Google Scholar]
  48. Söhling B., Gottschalk G. Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri. J Bacteriol. 1996 Feb;178(3):871–880. doi: 10.1128/jb.178.3.871-880.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tannich E., Bruchhaus I., Walter R. D., Horstmann R. D. Pathogenic and nonpathogenic Entamoeba histolytica: identification and molecular cloning of an iron-containing superoxide dismutase. Mol Biochem Parasitol. 1991 Nov;49(1):61–71. doi: 10.1016/0166-6851(91)90130-x. [DOI] [PubMed] [Google Scholar]
  50. Townson S. M., Hanson G. R., Upcroft J. A., Upcroft P. A purified ferredoxin from Giardia duodenalis. Eur J Biochem. 1994 Mar 1;220(2):439–446. doi: 10.1111/j.1432-1033.1994.tb18641.x. [DOI] [PubMed] [Google Scholar]
  51. Townson S. M., Upcroft J. A., Upcroft P. Characterisation and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis. Mol Biochem Parasitol. 1996 Aug;79(2):183–193. doi: 10.1016/0166-6851(96)02661-8. [DOI] [PubMed] [Google Scholar]
  52. Tsuji S., Qureshi M. A., Hou E. W., Fitch W. M., Li S. S. Evolutionary relationships of lactate dehydrogenases (LDHs) from mammals, birds, an amphibian, fish, barley, and bacteria: LDH cDNA sequences from Xenopus, pig, and rat. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9392–9396. doi: 10.1073/pnas.91.20.9392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Vines R. R., Purdy J. E., Ragland B. D., Samuelson J., Mann B. J., Petri W. A., Jr Stable episomal transfection of Entamoeba histolytica. Mol Biochem Parasitol. 1995 May;71(2):265–267. doi: 10.1016/0166-6851(95)00057-8. [DOI] [PubMed] [Google Scholar]
  54. Wieland O. H. The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Physiol Biochem Pharmacol. 1983;96:123–170. doi: 10.1007/BFb0031008. [DOI] [PubMed] [Google Scholar]
  55. Williamson V. M., Paquin C. E. Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol Gen Genet. 1987 Sep;209(2):374–381. doi: 10.1007/BF00329668. [DOI] [PubMed] [Google Scholar]
  56. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yang D., Oyaizu Y., Oyaizu H., Olsen G. J., Woese C. R. Mitochondrial origins. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4443–4447. doi: 10.1073/pnas.82.13.4443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yang W., Li E., Kairong T., Stanley S. L., Jr Entamoeba histolytica has an alcohol dehydrogenase homologous to the multifunctional adhE gene product of Escherichia coli. Mol Biochem Parasitol. 1994 Apr;64(2):253–260. doi: 10.1016/0166-6851(93)00020-a. [DOI] [PubMed] [Google Scholar]
  59. Yee J., Dennis P. P. Isolation and characterization of a NADP-dependent glutamate dehydrogenase gene from the primitive eucaryote Giardia lamblia. J Biol Chem. 1992 Apr 15;267(11):7539–7544. [PubMed] [Google Scholar]
  60. Yokoyama S., Yokoyama R., Kinlaw C. S., Harry D. E. Molecular evolution of the zinc-containing long-chain alcohol dehydrogenase genes. Mol Biol Evol. 1990 Mar;7(2):143–154. doi: 10.1093/oxfordjournals.molbev.a040593. [DOI] [PubMed] [Google Scholar]
  61. Young M., Minton N. P., Staudenbauer W. L. Recent advances in the genetics of the clostridia. FEMS Microbiol Rev. 1989 Dec;5(4):301–325. doi: 10.1111/j.1574-6968.1989.tb03402.x. [DOI] [PubMed] [Google Scholar]
  62. Yu Y., Samuelson J. Primary structure of an Entamoeba histolytica nicotinamide nucleotide transhydrogenase. Mol Biochem Parasitol. 1994 Dec;68(2):323–328. doi: 10.1016/0166-6851(94)90178-3. [DOI] [PubMed] [Google Scholar]
  63. Zhang W. W., Shen P. S., Descoteaux S., Samuelson J. Cloning and expression of the gene for an NADP(+)-dependent aldehyde dehydrogenase of Entamoeba histolytica. Mol Biochem Parasitol. 1994 Jan;63(1):157–161. doi: 10.1016/0166-6851(94)90019-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES