Abstract
The nth and nei genes of Escherichia coli affect the production of endonuclease III and endonuclease VIII, respectively, glycosylases/apurinic lyases that attack DNA damaged by oxidizing agents. Here, we provide evidence that oxidative lethal lesions are repaired by both endonuclease III and endonuclease VIII and that spontaneous mutagenic lesions are repaired mainly by endonuclease III.
Full Text
The Full Text of this article is available as a PDF (136.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akasaka S., Yamamoto K. Construction of Escherichia coli K12 phr deletion and insertion mutants by gene replacement. Mutat Res. 1991 Jan;254(1):27–35. doi: 10.1016/0921-8777(91)90037-p. [DOI] [PubMed] [Google Scholar]
- Aspinwall R., Rothwell D. G., Roldan-Arjona T., Anselmino C., Ward C. J., Cheadle J. P., Sampson J. R., Lindahl T., Harris P. C., Hickson I. D. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):109–114. doi: 10.1073/pnas.94.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basu A. K., Loechler E. L., Leadon S. A., Essigmann J. M. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7677–7681. doi: 10.1073/pnas.86.20.7677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breimer L. H., Lindahl T. DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of endonuclease III in Escherichia coli. J Biol Chem. 1984 May 10;259(9):5543–5548. [PubMed] [Google Scholar]
- Clark J. M., Beardsley G. P. Thymine glycol lesions terminate chain elongation by DNA polymerase I in vitro. Nucleic Acids Res. 1986 Jan 24;14(2):737–749. doi: 10.1093/nar/14.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunningham R. P., Weiss B. Endonuclease III (nth) mutants of Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jan;82(2):474–478. doi: 10.1073/pnas.82.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demple B., Linn S. DNA N-glycosylases and UV repair. Nature. 1980 Sep 18;287(5779):203–208. doi: 10.1038/287203a0. [DOI] [PubMed] [Google Scholar]
- Eide L., Bjørås M., Pirovano M., Alseth I., Berdal K. G., Seeberg E. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10735–10740. doi: 10.1073/pnas.93.20.10735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hariharan P. V., Achey P. M., Cerutti P. A. Biological effect of thymine ring saturation in coliphage phiX174-DNA. Radiat Res. 1977 Feb;69(2):375–378. [PubMed] [Google Scholar]
- Hatahet Z., Kow Y. W., Purmal A. A., Cunningham R. P., Wallace S. S. New substrates for old enzymes. 5-Hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2'-deoxyuridine is a substrate for uracil DNA N-glycosylase. J Biol Chem. 1994 Jul 22;269(29):18814–18820. [PubMed] [Google Scholar]
- Hayes R. C., LeClerc J. E. Sequence dependence for bypass of thymine glycols in DNA by DNA polymerase I. Nucleic Acids Res. 1986 Jan 24;14(2):1045–1061. doi: 10.1093/nar/14.2.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ide H., Kow Y. W., Wallace S. S. Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucleic Acids Res. 1985 Nov 25;13(22):8035–8052. doi: 10.1093/nar/13.22.8035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katcher H. L., Wallace S. S. Characterization of the Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry. 1983 Aug 16;22(17):4071–4081. doi: 10.1021/bi00286a013. [DOI] [PubMed] [Google Scholar]
- Laspia M. F., Wallace S. S. Excision repair of thymine glycols, urea residues, and apurinic sites in Escherichia coli. J Bacteriol. 1988 Aug;170(8):3359–3366. doi: 10.1128/jb.170.8.3359-3366.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melamede R. J., Hatahet Z., Kow Y. W., Ide H., Wallace S. S. Isolation and characterization of endonuclease VIII from Escherichia coli. Biochemistry. 1994 Feb 8;33(5):1255–1264. doi: 10.1021/bi00171a028. [DOI] [PubMed] [Google Scholar]
- Moran E., Wallace S. S. The role of specific DNA base damages in the X-ray-induced inactivation of bacteriophage PM2. Mutat Res. 1985 Nov;146(3):229–241. doi: 10.1016/0167-8817(85)90063-x. [DOI] [PubMed] [Google Scholar]
- Nishimura A., Akiyama K., Kohara Y., Horiuchi K. Correlation of a subset of the pLC plasmids to the physical map of Escherichia coli K-12. Microbiol Rev. 1992 Mar;56(1):137–151. doi: 10.1128/mr.56.1.137-151.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roldán-Arjona T., Anselmino C., Lindahl T. Molecular cloning and functional analysis of a Schizosaccharomyces pombe homologue of Escherichia coli endonuclease III. Nucleic Acids Res. 1996 Sep 1;24(17):3307–3312. doi: 10.1093/nar/24.17.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruiz-Rubio M., Yamamoto K., Bockrath R. An in vivo complex with DNA photolyase blocks UV mutagenesis targeted at a thymine-cytosine dimer in Escherichia coli. J Bacteriol. 1988 Nov;170(11):5371–5374. doi: 10.1128/jb.170.11.5371-5374.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winans S. C., Elledge S. J., Krueger J. H., Walker G. C. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1219–1221. doi: 10.1128/jb.161.3.1219-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto K., Satake M., Shinagawa H., Fujiwara Y. Amelioration of the ultraviolet sensitivity of an Escherichia coli recA mutant in the dark by photoreactivating enzyme. Mol Gen Genet. 1983;190(3):511–515. doi: 10.1007/BF00331084. [DOI] [PubMed] [Google Scholar]