Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jun;179(12):3845–3850. doi: 10.1128/jb.179.12.3845-3850.1997

Size of cotA and identification of the gene product in Synechocystis sp. strain PCC6803.

M Sonoda 1, K Kitano 1, A Katoh 1, H Katoh 1, H Ohkawa 1, T Ogawa 1
PMCID: PMC179191  PMID: 9190798

Abstract

cotA of Synechocystis sp. strain PCC6803 is a gene involved in light-induced proton extrusion (A. Katoh, M. Sonoda, H. Katoh, and T. Ogawa, J. Bacteriol. 178:5452-5455, 1996). There are two possible initiation codons in cotA, and either long (L-) or short (S-) cotA encoding a protein of 440 or 247 amino acids could be postulated. To determine the gene size, we inserted L-cotA and S-cotA into the genome of a cotA-less mutant (M29) to construct M29(L-cotA) and M29(S-cotA), respectively. M29(L-cotA) showed essentially the same net proton movement profile as the wild type, whereas no light-induced proton extrusion was observed with M29(S-cotA). Two kinds of antibodies were raised against partial gene products of the N- and C-terminal regions of L-cotA, respectively, fused to glutathione S-transferase expressed in Escherichia coli. Both antibodies cross-reacted with a band at 52 kDa in both cytoplasmic and thylakoid membrane fractions of the wild-type cells. The same cross-reacting band was present in the membranes of M29(L-cotA) but not in M29 or M29(S-cotA). These antibodies cross-reacted more strongly with the cytoplasmic membrane fraction than with the thylakoid membrane fraction. The antibody against NrtA, a nitrate transporter protein present only in the cytoplasmic membrane, also cross-reacted with the thylakoid membrane fraction strongly. Based on these results we concluded that CotA of 440 amino acids (51 kDa) is located in the cytoplasmic membrane. Whether CotA is absent in the thylakoid membrane remains to be solved.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba H., Adhya S., de Crombrugghe B. Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem. 1981 Nov 25;256(22):11905–11910. [PubMed] [Google Scholar]
  2. Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
  3. Kaplan A., Scherer S., Lerner M. Nature of the light-induced h efflux and na uptake in cyanobacteria. Plant Physiol. 1989 Apr;89(4):1220–1225. doi: 10.1104/pp.89.4.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Katoh A., Lee K. S., Fukuzawa H., Ohyama K., Ogawa T. cemA homologue essential to CO2 transport in the cyanobacterium Synechocystis PCC6803. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4006–4010. doi: 10.1073/pnas.93.9.4006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Katoh A., Sonoda M., Katoh H., Ogawa T. Absence of light-induced proton extrusion in a cotA-less mutant of Synechocystis sp. strain PCC6803. J Bacteriol. 1996 Sep;178(18):5452–5455. doi: 10.1128/jb.178.18.5452-5455.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kelly J. L., Greenleaf A. L., Lehman I. R. Isolation of the nuclear gene encoding a subunit of the yeast mitochondrial RNA polymerase. J Biol Chem. 1986 Aug 5;261(22):10348–10351. [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Ogawa T. Identification and Characterization of the ictA/ndhL Gene Product Essential to Inorganic Carbon Transport of Synechocystis PCC6803. Plant Physiol. 1992 Aug;99(4):1604–1608. doi: 10.1104/pp.99.4.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ogawa T., Kaplan A. The Stoichiometry between CO(2) and H Fluxes Involved in the Transport of Inorganic Carbon in Cyanobacteria. Plant Physiol. 1987 Apr;83(4):888–891. doi: 10.1104/pp.83.4.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Oka A., Sugisaki H., Takanami M. Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol. 1981 Apr 5;147(2):217–226. doi: 10.1016/0022-2836(81)90438-1. [DOI] [PubMed] [Google Scholar]
  11. Omata T., Ogawa T. Biosynthesis of a 42-kD Polypeptide in the Cytoplasmic Membrane of the Cyanobacterium Anacystis nidulans Strain R2 during Adaptation to Low CO(2) Concentration. Plant Physiol. 1986 Feb;80(2):525–530. doi: 10.1104/pp.80.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Omata T., Ohmori M., Arai N., Ogawa T. Genetically engineered mutant of the cyanobacterium Synechococcus PCC 7942 defective in nitrate transport. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6612–6616. doi: 10.1073/pnas.86.17.6612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  14. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  15. Sasaki Y., Sekiguchi K., Nagano Y., Matsuno R. Chloroplast envelope protein encoded by chloroplast genome. FEBS Lett. 1993 Jan 18;316(1):93–98. doi: 10.1016/0014-5793(93)81743-j. [DOI] [PubMed] [Google Scholar]
  16. Scherer S., Riege H., Böger P. Light-Induced Proton Release by the Cyanobacterium Anabaena variabilis: Dependence on CO(2) and Na. Plant Physiol. 1988 Mar;86(3):769–772. doi: 10.1104/pp.86.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  18. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ueguchi C., Ito K. Multicopy suppression: an approach to understanding intracellular functioning of the protein export system. J Bacteriol. 1992 Mar;174(5):1454–1461. doi: 10.1128/jb.174.5.1454-1461.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Willey D. L., Gray J. C. An open reading frame encoding a putative haem-binding polypeptide is cotranscribed with the pea chloroplast gene for apocytochrome f. Plant Mol Biol. 1990 Aug;15(2):347–356. doi: 10.1007/BF00036920. [DOI] [PubMed] [Google Scholar]
  22. Williams J. G., Szalay A. A. Stable integration of foreign DNA into the chromosome of the cyanobacterium Synechococcus R2. Gene. 1983 Sep;24(1):37–51. doi: 10.1016/0378-1119(83)90129-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES