Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jun;179(12):3936–3943. doi: 10.1128/jb.179.12.3936-3943.1997

Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally.

N Kimura 1, A Nishi 1, M Goto 1, K Furukawa 1
PMCID: PMC179202  PMID: 9190809

Abstract

The biphenyl dioxygenases (BP Dox) of strains Pseudomonas pseudoalcaligenes KF707 and Pseudomonas cepacia LB400 exhibit a distinct difference in substrate ranges of polychlorinated biphenyls (PCB) despite nearly identical amino acid sequences. The range of congeners oxidized by LB400 BP Dox is much wider than that oxidized by KF707 BP Dox. The PCB degradation abilities of these BP Dox were highly dependent on the recognition of the chlorinated rings and the sites of oxygen activation. The KF707 BP Dox recognized primarily the 4'-chlorinated ring (97%) of 2,5,4'-trichlorobiphenyl and introduced molecular oxygen at the 2',3' position. The LB400 BP Dox recognized primarily the 2,5-dichlorinated ring (95%) of the same compound and introduced O2 at the 3,4 position. It was confirmed that the BphA1 subunit (iron-sulfur protein of terminal dioxygenase encoded by bphA1) plays a crucial role in determining the substrate selectivity. We constructed a variety of chimeric bphA1 genes by exchanging four common restriction fragments between the KF707 bphA1 and the LB400 bphA1. Observation of Escherichia coli cells expressing various chimeric BP Dox revealed that a relatively small number of amino acids in the carboxy-terminal half (among 20 different amino acids in total) are involved in the recognition of the chlorinated ring and the sites of dioxygenation and thereby are responsible for the degradation of PCB. The site-directed mutagenesis of Thr-376 (KF707) to Asn-376 (LB400) in KF707 BP Dox resulted in the expansion of the range of biodegradable PCB congeners.

Full Text

The Full Text of this article is available as a PDF (386.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedard D. L., Haberl M. L., May R. J., Brennan M. J. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl Environ Microbiol. 1987 May;53(5):1103–1112. doi: 10.1128/aem.53.5.1103-1112.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedard D. L., Unterman R., Bopp L. H., Brennan M. J., Haberl M. L., Johnson C. Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol. 1986 Apr;51(4):761–768. doi: 10.1128/aem.51.4.761-768.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Erickson B. D., Mondello F. J. Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol. 1993 Nov;59(11):3858–3862. doi: 10.1128/aem.59.11.3858-3862.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Erickson B. D., Mondello F. J. Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J Bacteriol. 1992 May;174(9):2903–2912. doi: 10.1128/jb.174.9.2903-2912.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Furukawa K., Arimura N., Miyazaki T. Nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene of Pseudomonas pseudoalcaligenes. J Bacteriol. 1987 Jan;169(1):427–429. doi: 10.1128/jb.169.1.427-429.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Furukawa K., Hayase N., Taira K., Tomizuka N. Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J Bacteriol. 1989 Oct;171(10):5467–5472. doi: 10.1128/jb.171.10.5467-5472.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furukawa K., Hayashida S., Taira K. Gene-specific transposon mutagenesis of the biphenyl/polychlorinated biphenyl-degradation-controlling bph operon in soil bacteria. Gene. 1991 Feb 1;98(1):21–28. doi: 10.1016/0378-1119(91)90099-w. [DOI] [PubMed] [Google Scholar]
  8. Furukawa K., Hirose J., Hayashida S., Nakamura K. Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. J Bacteriol. 1994 Apr;176(7):2121–2123. doi: 10.1128/jb.176.7.2121-2123.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Furukawa K., Hirose J., Suyama A., Zaiki T., Hayashida S. Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J Bacteriol. 1993 Aug;175(16):5224–5232. doi: 10.1128/jb.175.16.5224-5232.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Furukawa K., Miyazaki T. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol. 1986 May;166(2):392–398. doi: 10.1128/jb.166.2.392-398.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Furukawa K. Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation. 1994 Dec;5(3-4):289–300. doi: 10.1007/BF00696466. [DOI] [PubMed] [Google Scholar]
  12. Furukawa K., Tomizuka N., Kamibayashi A. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl Environ Microbiol. 1979 Aug;38(2):301–310. doi: 10.1128/aem.38.2.301-310.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gibson D. T., Cruden D. L., Haddock J. D., Zylstra G. J., Brand J. M. Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707. J Bacteriol. 1993 Jul;175(14):4561–4564. doi: 10.1128/jb.175.14.4561-4564.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haddock J. D., Horton J. R., Gibson D. T. Dihydroxylation and dechlorination of chlorinated biphenyls by purified biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400. J Bacteriol. 1995 Jan;177(1):20–26. doi: 10.1128/jb.177.1.20-26.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Han S., Eltis L. D., Timmis K. N., Muchmore S. W., Bolin J. T. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science. 1995 Nov 10;270(5238):976–980. doi: 10.1126/science.270.5238.976. [DOI] [PubMed] [Google Scholar]
  16. Hayase N., Taira K., Furukawa K. Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J Bacteriol. 1990 Feb;172(2):1160–1164. doi: 10.1128/jb.172.2.1160-1164.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hirose J., Suyama A., Hayashida S., Furukawa K. Construction of hybrid biphenyl (bph) and toluene (tod) genes for functional analysis of aromatic ring dioxygenases. Gene. 1994 Jan 28;138(1-2):27–33. doi: 10.1016/0378-1119(94)90779-x. [DOI] [PubMed] [Google Scholar]
  18. Hofer B., Backhaus S., Timmis K. N. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene. 1994 Jun 24;144(1):9–16. doi: 10.1016/0378-1119(94)90196-1. [DOI] [PubMed] [Google Scholar]
  19. Hofer B., Eltis L. D., Dowling D. N., Timmis K. N. Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene. 1993 Aug 16;130(1):47–55. doi: 10.1016/0378-1119(93)90345-4. [DOI] [PubMed] [Google Scholar]
  20. Masai E., Yamada A., Healy J. M., Hatta T., Kimbara K., Fukuda M., Yano K. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol. 1995 Jun;61(6):2079–2085. doi: 10.1128/aem.61.6.2079-2085.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mason J. R., Cammack R. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol. 1992;46:277–305. doi: 10.1146/annurev.mi.46.100192.001425. [DOI] [PubMed] [Google Scholar]
  22. Suyama A., Iwakiri R., Kimura N., Nishi A., Nakamura K., Furukawa K. Engineering hybrid pseudomonads capable of utilizing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene. J Bacteriol. 1996 Jul;178(14):4039–4046. doi: 10.1128/jb.178.14.4039-4046.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taira K., Hirose J., Hayashida S., Furukawa K. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem. 1992 Mar 5;267(7):4844–4853. [PubMed] [Google Scholar]
  24. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  25. van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev. 1992 Dec;56(4):677–694. doi: 10.1128/mr.56.4.677-694.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES