Abstract
A 15-kb region of Pseudomonas putida chromosomal DNA containing the mde operon and an upstream regulatory gene (mdeR) has been cloned and sequenced. The mde operon contains two structural genes involved in L-methionine degradative metabolism: the already-identified mdeA, which encodes L-methionine gamma-lyase (H. Inoue, K. Inagaki, M. Sugimoto, N. Esaki, K. Soda, and H. Tanaka. J. Biochem. (Tokyo) 117:1120-1125, 1995), and mdeB, which encodes a homologous protein to the homodimeric-type E1 component of pyruvate dehydrogenase complex. A rho-independent terminator was present just downstream of mdeB, and open reading frames corresponding to other components of alpha-keto acid dehydrogenase complex were not found. When MdeB was overproduced in Escherichia coli, the cell extract showed the E1 activity with high specificity for alpha-ketobutyrate rather than pyruvate. These results suggest that MdeB plays an important role in the metabolism of alpha-ketobutyrate produced by MdeA from L-methionine. Accordingly, mdeB encodes a novel E1 component, alpha-ketobutyrate dehydrogenase E1 component, of an unknown alpha-keto acid dehydrogenase complex in P. putida. In addition, we found that the mdeR gene was located on the opposite strand and began at 127 bp from the translational start site of mdeA. The mdeR gene product has been identified as a member of the leucine-responsive regulatory protein (Lrp) family and revealed to act as an essential positive regulator allowing the expression of the mdeAB operon.
Full Text
The Full Text of this article is available as a PDF (467.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belfaiza J., Parsot C., Martel A., de la Tour C. B., Margarita D., Cohen G. N., Saint-Girons I. Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci U S A. 1986 Feb;83(4):867–871. doi: 10.1073/pnas.83.4.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisswanger H. Substrate specificity of the pyruvate dehydrogenase complex from Escherichia coli. J Biol Chem. 1981 Jan 25;256(2):815–822. [PubMed] [Google Scholar]
- Brennan R. G., Matthews B. W. The helix-turn-helix DNA binding motif. J Biol Chem. 1989 Feb 5;264(4):1903–1906. [PubMed] [Google Scholar]
- Calvo J. M., Matthews R. G. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):466–490. doi: 10.1128/mr.58.3.466-490.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danchin A., Dondon L., Daniel J. Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12. Mol Gen Genet. 1984;193(3):473–478. doi: 10.1007/BF00382086. [DOI] [PubMed] [Google Scholar]
- Epelbaum S., Chipman D. M., Barak Z. Metabolic effects of inhibitors of two enzymes of the branched-chain amino acid pathway in Salmonella typhimurium. J Bacteriol. 1996 Feb;178(4):1187–1196. doi: 10.1128/jb.178.4.1187-1196.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison S. C., Aggarwal A. K. DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem. 1990;59:933–969. doi: 10.1146/annurev.bi.59.070190.004441. [DOI] [PubMed] [Google Scholar]
- Hawkins C. F., Borges A., Perham R. N. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett. 1989 Sep 11;255(1):77–82. doi: 10.1016/0014-5793(89)81064-6. [DOI] [PubMed] [Google Scholar]
- Hein S., Steinbüchel A. Alcaligenes eutrophus possesses a second pyruvate dehydrogenase (E1). Eur J Biochem. 1996 May 1;237(3):674–684. doi: 10.1111/j.1432-1033.1996.0674p.x. [DOI] [PubMed] [Google Scholar]
- Hein S., Steinbüchel A. Biochemical and molecular characterization of the Alcaligenes eutrophus pyruvate dehydrogenase complex and identification of a new type of dihydrolipoamide dehydrogenase. J Bacteriol. 1994 Jul;176(14):4394–4408. doi: 10.1128/jb.176.14.4394-4408.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hester K., Luo J., Burns G., Braswell E. H., Sokatch J. R. Purification of active E1 alpha 2 beta 2 of Pseudomonas putida branched-chain-oxoacid dehydrogenase. Eur J Biochem. 1995 Nov 1;233(3):828–836. doi: 10.1111/j.1432-1033.1995.828_3.x. [DOI] [PubMed] [Google Scholar]
- Huang N., Madhusudhan K. T., Sokatch J. R. Stoichiometry of BkdR to substrate DNA in Pseudomonas putida. Biochem Biophys Res Commun. 1996 Jun 14;223(2):315–319. doi: 10.1006/bbrc.1996.0891. [DOI] [PubMed] [Google Scholar]
- Inoue H., Inagaki K., Sugimoto M., Esaki N., Soda K., Tanaka H. Structural analysis of the L-methionine gamma-lyase gene from Pseudomonas putida. J Biochem. 1995 May;117(5):1120–1125. doi: 10.1093/oxfordjournals.jbchem.a124816. [DOI] [PubMed] [Google Scholar]
- Keuntje B., Masepohl B., Klipp W. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein. J Bacteriol. 1995 Nov;177(22):6432–6439. doi: 10.1128/jb.177.22.6432-6439.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreis W., Hession C. Isolation and purification of L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (L-methioninase) from Clostridium sporogenes. Cancer Res. 1973 Aug;33(8):1862–1865. [PubMed] [Google Scholar]
- Kölling R., Lother H. AsnC: an autogenously regulated activator of asparagine synthetase A transcription in Escherichia coli. J Bacteriol. 1985 Oct;164(1):310–315. doi: 10.1128/jb.164.1.310-315.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lapointe D. S., Olson M. S. alpha-Ketobutyrate metabolism in perfused rat liver: regulation of alpha-ketobutyrate decarboxylation and effects of alpha-ketobutyrate on pyruvate dehydrogenase. Arch Biochem Biophys. 1985 Nov 1;242(2):417–429. doi: 10.1016/0003-9861(85)90226-7. [DOI] [PubMed] [Google Scholar]
- Lockwood B. C., Coombs G. H. Purification and characterization of methionine gamma-lyase from Trichomonas vaginalis. Biochem J. 1991 Nov 1;279(Pt 3):675–682. doi: 10.1042/bj2790675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowe P. N., Leeper F. J., Perham R. N. Stereoisomers of tetrahydrothiamin pyrophosphate, potent inhibitors of the pyruvate dehydrogenase multienzyme complex from Escherichia coli. Biochemistry. 1983 Jan 4;22(1):150–157. doi: 10.1021/bi00270a022. [DOI] [PubMed] [Google Scholar]
- Madhusudhan K. T., Huang G., Burns G., Sokatch J. R. Transcriptional analysis of the promoter region of the Pseudomonas putida branched-chain keto acid dehydrogenase operon. J Bacteriol. 1990 Oct;172(10):5655–5663. doi: 10.1128/jb.172.10.5655-5663.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madhusudhan K. T., Huang N., Sokatch J. R. Characterization of BkdR-DNA binding in the expression of the bkd operon of Pseudomonas putida. J Bacteriol. 1995 Feb;177(3):636–641. doi: 10.1128/jb.177.3.636-641.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madhusudhan K. T., Lorenz D., Sokatch J. R. The bkdR gene of Pseudomonas putida is required for expression of the bkd operon and encodes a protein related to Lrp of Escherichia coli. J Bacteriol. 1993 Jul;175(13):3934–3940. doi: 10.1128/jb.175.13.3934-3940.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama T., Esaki N., Sugie K., Beresov T. T., Tanaka H., Soda K. Purification of bacterial L-methionine gamma-lyase. Anal Biochem. 1984 May 1;138(2):421–424. doi: 10.1016/0003-2697(84)90832-7. [DOI] [PubMed] [Google Scholar]
- Palmer J. A., Hatter K., Sokatch J. R. Cloning and sequence analysis of the LPD-glc structural gene of Pseudomonas putida. J Bacteriol. 1991 May;173(10):3109–3116. doi: 10.1128/jb.173.10.3109-3116.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Platt T. Transcription termination and the regulation of gene expression. Annu Rev Biochem. 1986;55:339–372. doi: 10.1146/annurev.bi.55.070186.002011. [DOI] [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- Saito I., Stark G. R. Charomids: cosmid vectors for efficient cloning and mapping of large or small restriction fragments. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8664–8668. doi: 10.1073/pnas.83.22.8664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skinner D. D., Morgenstern M. R., Fedechko R. W., Denoya C. D. Cloning and sequencing of a cluster of genes encoding branched-chain alpha-keto acid dehydrogenase from Streptomyces avermitilis and the production of a functional E1 [alpha beta] component in Escherichia coli. J Bacteriol. 1995 Jan;177(1):183–190. doi: 10.1128/jb.177.1.183-190.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soda K. Microbial sulfur amino acids: an overview. Methods Enzymol. 1987;143:453–459. doi: 10.1016/0076-6879(87)43080-2. [DOI] [PubMed] [Google Scholar]
- Soda K. Microdetermination of D-amino acids and D-amino acid oxidase activity with 3,methyl-2-benzothiazolone hydrazone hydrochloride. Anal Biochem. 1968 Oct 24;25(1):228–235. doi: 10.1016/0003-2697(68)90095-x. [DOI] [PubMed] [Google Scholar]
- Stephens P. E., Darlison M. G., Lewis H. M., Guest J. R. The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the pyruvate dehydrogenase component. Eur J Biochem. 1983 Jun 1;133(1):155–162. doi: 10.1111/j.1432-1033.1983.tb07441.x. [DOI] [PubMed] [Google Scholar]
- Sykes P. J., Burns G., Menard J., Hatter K., Sokatch J. R. Molecular cloning of genes encoding branched-chain keto acid dehydrogenase of Pseudomonas putida. J Bacteriol. 1987 Apr;169(4):1619–1625. doi: 10.1128/jb.169.4.1619-1625.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sykes P. J., Menard J., McCully V., Sokatch J. R. Conjugative mapping of pyruvate, 2-ketoglutarate, and branched-chain keto acid dehydrogenase genes in Pseudomonas putida mutants. J Bacteriol. 1985 Apr;162(1):203–208. doi: 10.1128/jb.162.1.203-208.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka H., Esaki N., Soda K. Properties of L-methionine gamma-lyase from Pseudomonas ovalis. Biochemistry. 1977 Jan 11;16(1):100–106. doi: 10.1021/bi00620a016. [DOI] [PubMed] [Google Scholar]
- Van Dyk T. K., LaRossa R. A. Involvement of ack-pta operon products in alpha-ketobutyrate metabolism by Salmonella typhimurium. Mol Gen Genet. 1987 May;207(2-3):435–440. doi: 10.1007/BF00331612. [DOI] [PubMed] [Google Scholar]
- Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
- Willins D. A., Ryan C. W., Platko J. V., Calvo J. M. Characterization of Lrp, and Escherichia coli regulatory protein that mediates a global response to leucine. J Biol Chem. 1991 Jun 15;266(17):10768–10774. [PubMed] [Google Scholar]