Abstract
The sulfate-reducing bacterium Desulfovibrio gigas accumulates large amounts of polyglucose as an endogenous carbon and energy reserve. In the absence of exogenous substrates, the intracellular polysaccharide was utilized, and energy was conserved in the process (H. Santos, P. Fareleira, A. V. Xavier, L. Chen, M.-Y. Liu, and J. LeGall, Biochem. Biophys. Res. Commun. 195:551-557, 1993). When an external electron acceptor was not provided, degradation of polyglucose by cell suspensions of D. gigas yielded acetate, glycerol, hydrogen, and ethanol. A detailed investigation of the metabolic pathways involved in the formation of these end products was carried out, based on measurements of the activities of glycolytic enzymes in cell extracts, by either spectrophotometric or nuclear magnetic resonance (NMR) assays. All of the enzyme activities associated with the glycogen cleavage and the Embden-Meyerhof pathway were determined as well as those involved in the formation of glycerol from dihydroxyacetone phosphate (glycerol-3-phosphate dehydrogenase and glycerol phosphatase) and the enzymes that catalyze the reactions leading to the production of ethanol (pyruvate decarboxylase and ethanol dehydrogenase). The key enzymes of the Entner-Doudoroff pathway were not detected. The methylglyoxal bypass was identified as a second glycolytic branch operating simultaneously with the Embden-Meyerhof pathway. The relative contribution of these two pathways for polyglucose degradation was 2:3. 13C-labeling experiments with cell extracts using isotopically enriched glucose and 13C-NMR analysis supported the proposed pathways. The information on the metabolic pathways involved in polyglucose catabolism combined with analyses of the end products formed from polyglucose under fermentative conditions provided some insight into the role of NADH in D. gigas. In the presence of electron acceptors, NADH resulting from polyglucose degradation was utilized for the reduction of sulfate, thiosulfate, or nitrite, leading to the formation of acetate as the only carbon end product besides CO2. Evidence supporting the role of NADH as a source of reducing equivalents for the production of hydrogen is also presented.
Full Text
The Full Text of this article is available as a PDF (199.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chen L., Le Gall J., Xavier A. V. Purification, characterization and properties of an NADH oxidase from Desulfovibrio vulgaris (Hildenborough) and its coupling to adenylyl phosphosulfate reductase. Biochem Biophys Res Commun. 1994 Sep 15;203(2):839–844. doi: 10.1006/bbrc.1994.2259. [DOI] [PubMed] [Google Scholar]
- Chen L., LeGall J., Fareleira P., Santos H., Xavier A. V. Malate metabolism by Desulfovibrio gigas and its link to sulfate and fumarate reduction: purification of the malic enzyme and detection of NAD(P)+ transhydrogenase activity. Anaerobe. 1995 Aug;1(4):227–235. doi: 10.1006/anae.1995.1022. [DOI] [PubMed] [Google Scholar]
- Cooper R. A. Methylglyoxal formation during glucose catabolism by Pseudomonas saccharophila. Identification of methylglyoxal synthase. Eur J Biochem. 1974 May 2;44(1):81–86. doi: 10.1111/j.1432-1033.1974.tb03459.x. [DOI] [PubMed] [Google Scholar]
- Dawes E. A., Senior P. J. The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol. 1973;10:135–266. doi: 10.1016/s0065-2911(08)60088-0. [DOI] [PubMed] [Google Scholar]
- Hatchikian E. C., Le Gall J. Etude du métabolisme des acides dicarboxyliques et du pyruvate chez les bactéries sulfato-réductrices. I. Etude de l'oxydation enzymatique du fumarate en acétate. Ann Inst Pasteur (Paris) 1970 Feb;118(2):125–142. [PubMed] [Google Scholar]
- Hensel R., Laumann S., Lang J., Heumann H., Lottspeich F. Characterization of two D-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. Eur J Biochem. 1987 Dec 30;170(1-2):325–333. doi: 10.1111/j.1432-1033.1987.tb13703.x. [DOI] [PubMed] [Google Scholar]
- Hopper D. J., Cooper R. A. The purification and properties of Escherichia coli methylglyoxal synthase. Biochem J. 1972 Jun;128(2):321–329. doi: 10.1042/bj1280321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopper D. J., Cooper R. A. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett. 1971 Mar 16;13(4):213–216. doi: 10.1016/0014-5793(71)80538-0. [DOI] [PubMed] [Google Scholar]
- Inoue Y., Kimura A. Methylglyoxal and regulation of its metabolism in microorganisms. Adv Microb Physiol. 1995;37:177–227. doi: 10.1016/s0065-2911(08)60146-0. [DOI] [PubMed] [Google Scholar]
- Khandelwal R. L., Spearman T. N., Hamilton I. R. Purification and properties of glycogen phosphorylase from Streptococcus salivarius. Arch Biochem Biophys. 1973 Jan;154(1):295–305. doi: 10.1016/0003-9861(73)90061-1. [DOI] [PubMed] [Google Scholar]
- Maitra P. K., Lobo Z. A kinetic study of glycolytic enzyme synthesis in yeast. J Biol Chem. 1971 Jan 25;246(2):475–488. [PubMed] [Google Scholar]
- Murata K., Fukuda Y., Watanabe K., Saikusa T., Shimosaka M., Kimura A. Characterization of methylglyoxal synthase in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1985 Aug 30;131(1):190–198. doi: 10.1016/0006-291x(85)91788-7. [DOI] [PubMed] [Google Scholar]
- Odom J. M., Peck H. D., Jr Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol. 1981 Jul;147(1):161–169. doi: 10.1128/jb.147.1.161-169.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogata M., Arihara K., Yagi T. D-lactate dehydrogenase of Desulfovibrio vulgaris. J Biochem. 1981 May;89(5):1423–1431. doi: 10.1093/oxfordjournals.jbchem.a133334. [DOI] [PubMed] [Google Scholar]
- Penninckx M. J., Jaspers C. J., Legrain M. J. The glutathione-dependent glyoxalase pathway in the yeast Saccharomyces cerevisiae. J Biol Chem. 1983 May 25;258(10):6030–6036. [PubMed] [Google Scholar]
- Postma E., Verduyn C., Scheffers W. A., Van Dijken J. P. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol. 1989 Feb;55(2):468–477. doi: 10.1128/aem.55.2.468-477.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preiss J. Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol. 1984;38:419–458. doi: 10.1146/annurev.mi.38.100184.002223. [DOI] [PubMed] [Google Scholar]
- Santos H., Fareleira P., Xavier A. V., Chen L., Liu M. Y., LeGall J. Aerobic metabolism of carbon reserves by the "obligate anaerobe" Desulfovibrio gigas. Biochem Biophys Res Commun. 1993 Sep 15;195(2):551–557. doi: 10.1006/bbrc.1993.2081. [DOI] [PubMed] [Google Scholar]
- Terasaka K., Yamaguchi R., Matsuo K., Yamazaki A., Nagai S., Yamada T. Complete nucleotide sequence of immunogenic protein MPB70 from Mycobacterium bovis BCG. FEMS Microbiol Lett. 1989 Apr;49(2-3):273–276. doi: 10.1016/0378-1097(89)90052-9. [DOI] [PubMed] [Google Scholar]
- Thornalley P. J. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J. 1990 Jul 1;269(1):1–11. doi: 10.1042/bj2690001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veiga-da-Cunha M., Santos H., Van Schaftingen E. Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol. 1993 Jul;175(13):3941–3948. doi: 10.1128/jb.175.13.3941-3948.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu J. P., Ladapo J., Whitman W. B. Pathway of glycogen metabolism in Methanococcus maripaludis. J Bacteriol. 1994 Jan;176(2):325–332. doi: 10.1128/jb.176.2.325-332.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]