Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jul;179(13):4138–4142. doi: 10.1128/jb.179.13.4138-4142.1997

Aerobic regulation of the sucABCD genes of Escherichia coli, which encode alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthetase: roles of ArcA, Fnr, and the upstream sdhCDAB promoter.

S J Park 1, G Chao 1, R P Gunsalus 1
PMCID: PMC179232  PMID: 9209026

Abstract

The sucABCD genes of Escherichia coli encode subunits for two enzymes of the tricarboxylic acid (TCA) cycle, alpha-ketoglutarate dehydrogenase (sucAB) and succinyl coenzyme A synthetase (sucCD). To examine how these genes are expressed in response to changes in oxygen and carbon availability, a set of sucA-lacZ, sucC-lacZ, sdhCDAB-sucA-lacZ, and sdhC-lacZ fusions were constructed and analyzed in vivo. While the expression of a sucA-lacZ fusion was low under all cell growth conditions tested, the expression of the sucA gene from the upstream sdhC promoter was considerably higher and varied by up to 14-fold depending on the carbon substrate used. Expression of the sdhCDAB-sucA-lacZ fusion varied by fourfold in response to oxygen. In contrast, no expression was seen from a sucC-lacZ reporter fusion, indicating that no promoter immediately precedes the sucCD genes. Taken together, these findings demonstrate that the oxygen and carbon control of sucABCD gene expression occurs by transcriptional regulation of the upstream sdhC promoter. The weaker sucA promoter provides an additional low constitutive level of sucABCD gene expression to supplement transcription from the sdhC promoter. The negative control of sucABCD gene expression seen under anaerobic conditions, like that for the sdhCDAB genes, is provided by the arcA and fnr gene products. These findings establish that the differential expression of eight genes for three of the TCA cycle enzymes in E. coli is controlled from one regulatory element.

Full Text

The Full Text of this article is available as a PDF (141.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amarasingham C. R., Davis B. D. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. J Biol Chem. 1965 Sep;240(9):3664–3668. [PubMed] [Google Scholar]
  2. Cotter P. A., Gunsalus R. P. Contribution of the fnr and arcA gene products in coordinate regulation of cytochrome o and d oxidase (cyoABCDE and cydAB) genes in Escherichia coli. FEMS Microbiol Lett. 1992 Feb 1;70(1):31–36. doi: 10.1016/0378-1097(92)90558-6. [DOI] [PubMed] [Google Scholar]
  3. Cotter P. A., Gunsalus R. P. Oxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli. J Bacteriol. 1989 Jul;171(7):3817–3823. doi: 10.1128/jb.171.7.3817-3823.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gray C. T., Wimpenny J. W., Mossman M. R. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Biochim Biophys Acta. 1966 Mar 28;117(1):33–41. doi: 10.1016/0304-4165(66)90149-8. [DOI] [PubMed] [Google Scholar]
  5. Gruer M. J., Guest J. R. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology. 1994 Oct;140(Pt 10):2531–2541. doi: 10.1099/00221287-140-10-2531. [DOI] [PubMed] [Google Scholar]
  6. Gunsalus R. P., Park S. J. Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol. 1994 Jun-Aug;145(5-6):437–450. doi: 10.1016/0923-2508(94)90092-2. [DOI] [PubMed] [Google Scholar]
  7. Iuchi S., Aristarkhov A., Dong J. M., Taylor J. S., Lin E. C. Effects of nitrate respiration on expression of the Arc-controlled operons encoding succinate dehydrogenase and flavin-linked L-lactate dehydrogenase. J Bacteriol. 1994 Mar;176(6):1695–1701. doi: 10.1128/jb.176.6.1695-1701.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iuchi S., Lin E. C. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1888–1892. doi: 10.1073/pnas.85.6.1888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lopilato J., Bortner S., Beckwith J. Mutations in a new chromosomal gene of Escherichia coli K-12, pcnB, reduce plasmid copy number of pBR322 and its derivatives. Mol Gen Genet. 1986 Nov;205(2):285–290. doi: 10.1007/BF00430440. [DOI] [PubMed] [Google Scholar]
  10. Park S. J., Cotter P. A., Gunsalus R. P. Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J Bacteriol. 1995 Nov;177(22):6652–6656. doi: 10.1128/jb.177.22.6652-6656.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Park S. J., Gunsalus R. P. Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products. J Bacteriol. 1995 Nov;177(21):6255–6262. doi: 10.1128/jb.177.21.6255-6262.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Park S. J., McCabe J., Turna J., Gunsalus R. P. Regulation of the citrate synthase (gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. J Bacteriol. 1994 Aug;176(16):5086–5092. doi: 10.1128/jb.176.16.5086-5092.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Park S. J., Tseng C. P., Gunsalus R. P. Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. Mol Microbiol. 1995 Feb;15(3):473–482. doi: 10.1111/j.1365-2958.1995.tb02261.x. [DOI] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Simons R. W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. doi: 10.1016/0378-1119(87)90095-3. [DOI] [PubMed] [Google Scholar]
  16. Smith M. W., Neidhardt F. C. 2-Oxoacid dehydrogenase complexes of Escherichia coli: cellular amounts and patterns of synthesis. J Bacteriol. 1983 Oct;156(1):81–88. doi: 10.1128/jb.156.1.81-88.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spencer M. E., Guest J. R. Molecular cloning of four tricarboxylic acid cyclic genes of Escherichia coli. J Bacteriol. 1982 Aug;151(2):542–552. doi: 10.1128/jb.151.2.542-552.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spencer M. E., Guest J. R. Transcription analysis of the sucAB, aceEF and lpd genes of Escherichia coli. Mol Gen Genet. 1985;200(1):145–154. doi: 10.1007/BF00383328. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES