Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jul;179(13):4143–4157. doi: 10.1128/jb.179.13.4143-4157.1997

Aspartate transcarbamylase from the deep-sea hyperthermophilic archaeon Pyrococcus abyssi: genetic organization, structure, and expression in Escherichia coli.

C Purcarea 1, G Hervé 1, M M Ladjimi 1, R Cunin 1
PMCID: PMC179233  PMID: 9209027

Abstract

The genes coding for aspartate transcarbamylase (ATCase) in the deep-sea hyperthermophilic archaeon Pyrococcus abyssi were cloned by complementation of a pyrB Escherichia coli mutant. The sequence revealed the existence of a pyrBI operon, coding for a catalytic chain and a regulatory chain, as in Enterobacteriaceae. Comparison of primary sequences of the polypeptides encoded by the pyrB and pyrI genes with those of homologous eubacterial and eukaryotic chains showed a high degree of conservation of the residues which in E. coli ATCase are involved in catalysis and allosteric regulation. The regulatory chain shows more-extensive divergence with respect to that of E. coli and other Enterobacteriaceae than the catalytic chain. Several substitutions suggest the existence in P. abyssi ATCase of additional hydrophobic interactions and ionic bonds which are probably involved in protein stabilization at high temperatures. The catalytic chain presents a secondary structure similar to that of the E. coli enzyme. Modeling of the tridimensional structure of this chain provides a folding close to that of the E. coli protein in spite of several significant differences. Conservation of numerous pairs of residues involved in the interfaces between different chains or subunits in E. coli ATCase suggests that the P. abyssi enzyme has a quaternary structure similar to that of the E. coli enzyme. P. abyssi ATCase expressed in transgenic E. coli cells exhibited reduced cooperativity for aspartate binding and sensitivity to allosteric effectors, as well as a decreased thermostability and barostability, suggesting that in P. abyssi cells this enzyme is further stabilized through its association with other cellular components.

Full Text

The Full Text of this article is available as a PDF (939.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN C. M., Jr, JONES M. E. DECOMPOSITION OF CARBAMYLPHOSPHATE IN AQUEOUS SOLUTIONS. Biochemistry. 1964 Sep;3:1238–1247. doi: 10.1021/bi00897a010. [DOI] [PubMed] [Google Scholar]
  2. Allewell N. M. Escherichia coli aspartate transcarbamoylase: structure, energetics, and catalytic and regulatory mechanisms. Annu Rev Biophys Biophys Chem. 1989;18:71–92. doi: 10.1146/annurev.bb.18.060189.000443. [DOI] [PubMed] [Google Scholar]
  3. Beck D., Kedzie K. M., Wild J. R. Comparison of the aspartate transcarbamoylases from Serratia marcescens and Escherichia coli. J Biol Chem. 1989 Oct 5;264(28):16629–16637. [PubMed] [Google Scholar]
  4. Brown J. W., Daniels C. J., Reeve J. N. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol. 1989;16(4):287–338. doi: 10.3109/10408418909105479. [DOI] [PubMed] [Google Scholar]
  5. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  6. Charbonnier F., Erauso G., Barbeyron T., Prieur D., Forterre P. Evidence that a plasmid from a hyperthermophilic archaebacterium is relaxed at physiological temperatures. J Bacteriol. 1992 Oct;174(19):6103–6108. doi: 10.1128/jb.174.19.6103-6108.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohlberg J. A., Pigiet V. P., Jr, Schachman H. K. Structure and arrangement of the regulatory subunits in aspartate transcarbamylase. Biochemistry. 1972 Aug 29;11(18):3396–3411. doi: 10.1021/bi00768a013. [DOI] [PubMed] [Google Scholar]
  8. Cunin R., Wales M. E., Van Vliet F., De Staercke C., Scapozza L., Rani C. S., Wild J. R. Allosteric regulation in a family of enterobacterial aspartate transcarbamylases: intramolecular transmission of regulatory signals in chimeric enzymes. J Mol Biol. 1996 Sep 20;262(2):258–269. doi: 10.1006/jmbi.1996.0511. [DOI] [PubMed] [Google Scholar]
  9. Davidson D. M., Smith R. M., Qaqundah P. Y. Cholesterol screening in children during office visits. J Pediatr Health Care. 1990 Jan-Feb;4(1):11–17. doi: 10.1016/0891-5245(90)90034-4. [DOI] [PubMed] [Google Scholar]
  10. Davidson J. N., Chen K. C., Jamison R. S., Musmanno L. A., Kern C. B. The evolutionary history of the first three enzymes in pyrimidine biosynthesis. Bioessays. 1993 Mar;15(3):157–164. doi: 10.1002/bies.950150303. [DOI] [PubMed] [Google Scholar]
  11. De Staercke C., Van Vliet F., Xi X. G., Rani C. S., Ladjimi M., Jacobs A., Triniolles F., Hervé G., Cunin R. Intramolecular transmission of the ATP regulatory signal in Escherichia coli aspartate transcarbamylase: specific involvement of a clustered set of amino acid interactions at an interface between regulatory and catalytic subunits. J Mol Biol. 1995 Feb 10;246(1):132–143. doi: 10.1006/jmbi.1994.0072. [DOI] [PubMed] [Google Scholar]
  12. England P., Hervé G. Synergistic inhibition of Escherichia coli aspartate transcarbamylase by CTP and UTP: binding studies using continuous-flow dialysis. Biochemistry. 1992 Oct 13;31(40):9725–9732. doi: 10.1021/bi00155a028. [DOI] [PubMed] [Google Scholar]
  13. England P., Leconte C., Tauc P., Hervé G. Apparent cooperativity for carbamoylphosphate in Escherichia coli aspartate transcarbamoylase only reflects cooperativity for aspartate. Eur J Biochem. 1994 Jun 15;222(3):775–780. doi: 10.1111/j.1432-1033.1994.tb18924.x. [DOI] [PubMed] [Google Scholar]
  14. Evans D. R., Bein K., Guy H. I., Liu X., Molina J. A., Zimmermann B. H. CAD gene sequence and the domain structure of the mammalian multifunctional protein CAD. Biochem Soc Trans. 1993 Feb;21(1):186–191. doi: 10.1042/bst0210186. [DOI] [PubMed] [Google Scholar]
  15. Faure M., Camonis J. H., Jacquet M. Molecular characterization of a Dictyostelium discoideum gene encoding a multifunctional enzyme of the pyrimidine pathway. Eur J Biochem. 1989 Feb 1;179(2):345–358. doi: 10.1111/j.1432-1033.1989.tb14560.x. [DOI] [PubMed] [Google Scholar]
  16. Freund J. N., Zerges W., Schedl P., Jarry B. P., Vergis W. Molecular organization of the rudimentary gene of Drosophila melanogaster. J Mol Biol. 1986 May 5;189(1):25–36. doi: 10.1016/0022-2836(86)90378-5. [DOI] [PubMed] [Google Scholar]
  17. GLANSDORFF N. TOPOGRAPHY OF COTRANSDUCIBLE ARGININE MUTATIONS IN ESCHERICHIA COLI K-12. Genetics. 1965 Feb;51:167–179. doi: 10.1093/genetics/51.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gaboriaud C., Bissery V., Benchetrit T., Mornon J. P. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 1987 Nov 16;224(1):149–155. doi: 10.1016/0014-5793(87)80439-8. [DOI] [PubMed] [Google Scholar]
  19. Ganter C., Plückthun A. Glycine to alanine substitutions in helices of glyceraldehyde-3-phosphate dehydrogenase: effects on stability. Biochemistry. 1990 Oct 9;29(40):9395–9402. doi: 10.1021/bi00492a013. [DOI] [PubMed] [Google Scholar]
  20. Gouaux J. E., Lipscomb W. N. Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4205–4208. doi: 10.1073/pnas.85.12.4205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Griffin J. H., Rosenbusch J. P., Weber K. K., Blout E. R. Conformational changes in aspartate trancarbamylase. I. Studies of ligand binding and of subunit interactions by circular dichroism spectroscopy. J Biol Chem. 1972 Oct 25;247(20):6482–6490. [PubMed] [Google Scholar]
  22. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  23. Hoa G. H., Hamel G., Else A., Weill G., Hervé G. A reactor permitting injection and sampling for steady state studies of enzymatic reactions at high pressure: tests with aspartate transcarbamylase. Anal Biochem. 1990 Jun;187(2):258–261. doi: 10.1016/0003-2697(90)90453-g. [DOI] [PubMed] [Google Scholar]
  24. Hong J., Salo W. L., Anderson P. M. Nucleotide sequence and tissue-specific expression of the multifunctional protein carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) mRNA in Squalus acanthias. J Biol Chem. 1995 Jun 9;270(23):14130–14139. doi: 10.1074/jbc.270.23.14130. [DOI] [PubMed] [Google Scholar]
  25. Honzatko R. B., Lipscomb W. N. Interactions of phosphate ligands with Escherichia coli aspartate carbamoyltransferase in the crystalline state. J Mol Biol. 1982 Sep 15;160(2):265–286. doi: 10.1016/0022-2836(82)90176-0. [DOI] [PubMed] [Google Scholar]
  26. Hoover T. A., Roof W. D., Foltermann K. F., O'Donovan G. A., Bencini D. A., Wild J. R. Nucleotide sequence of the structural gene (pyrB) that encodes the catalytic polypeptide of aspartate transcarbamoylase of Escherichia coli. Proc Natl Acad Sci U S A. 1983 May;80(9):2462–2466. doi: 10.1073/pnas.80.9.2462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kantrowitz E. R., Lipscomb W. N. Escherichia coli aspartate transcarbamoylase: the molecular basis for a concerted allosteric transition. Trends Biochem Sci. 1990 Feb;15(2):53–59. doi: 10.1016/0968-0004(90)90176-c. [DOI] [PubMed] [Google Scholar]
  28. Ke H. M., Lipscomb W. N., Cho Y. J., Honzatko R. B. Complex of N-phosphonacetyl-L-aspartate with aspartate carbamoyltransferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. J Mol Biol. 1988 Dec 5;204(3):725–747. doi: 10.1016/0022-2836(88)90365-8. [DOI] [PubMed] [Google Scholar]
  29. Kerbiriou D., Hervé G. Biosynthesis of an aspartate transcarbamylase lacking co-operative interactions. I. Disconnection of homotropic and heterotropic interactions under the influence of 2-thiouracil. J Mol Biol. 1972 Mar 14;64(2):379–392. doi: 10.1016/0022-2836(72)90505-0. [DOI] [PubMed] [Google Scholar]
  30. Kosman R. P., Gouaux J. E., Lipscomb W. N. Crystal structure of CTP-ligated T state aspartate transcarbamoylase at 2.5 A resolution: implications for ATCase mutants and the mechanism of negative cooperativity. Proteins. 1993 Feb;15(2):147–176. doi: 10.1002/prot.340150206. [DOI] [PubMed] [Google Scholar]
  31. Krause K. L., Volz K. W., Lipscomb W. N. 2.5 A structure of aspartate carbamoyltransferase complexed with the bisubstrate analog N-(phosphonacetyl)-L-aspartate. J Mol Biol. 1987 Feb 5;193(3):527–553. doi: 10.1016/0022-2836(87)90265-8. [DOI] [PubMed] [Google Scholar]
  32. Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
  33. Lerner C. G., Switzer R. L. Cloning and structure of the Bacillus subtilis aspartate transcarbamylase gene (pyrB). J Biol Chem. 1986 Aug 25;261(24):11156–11165. [PubMed] [Google Scholar]
  34. Lipscomb W. N. Aspartate transcarbamylase from Escherichia coli: activity and regulation. Adv Enzymol Relat Areas Mol Biol. 1994;68:67–151. doi: 10.1002/9780470123140.ch3. [DOI] [PubMed] [Google Scholar]
  35. Lollier M., Jaquet L., Nedeva T., Lacroute F., Potier S., Souciet J. L. As in Saccharomyces cerevisiae, aspartate transcarbamoylase is assembled on a multifunctional protein including a dihydroorotase-like cryptic domain in Schizosaccharomyces pombe. Curr Genet. 1995 Jul;28(2):138–149. doi: 10.1007/BF00315780. [DOI] [PubMed] [Google Scholar]
  36. Major J. G., Jr, Wales M. E., Houghton J. E., Maley J. A., Davidson J. N., Wild J. R. Molecular evolution of enzyme structure: construction of a hybrid hamster/Escherichia coli aspartate transcarbamoylase. J Mol Evol. 1989 May;28(5):442–450. doi: 10.1007/BF02603079. [DOI] [PubMed] [Google Scholar]
  37. Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
  38. Meighen E. A., Pigiet V., Schachman H. K. Hybridization of native and chemically modified enzymes. 3. The catalytic subunits of aspartate transcarbamylase. Proc Natl Acad Sci U S A. 1970 Jan;65(1):234–241. doi: 10.1073/pnas.65.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
  40. Michaels G., Kelln R. A., Nargang F. E. Cloning, nucleotide sequence and expression of the pyrBI operon of Salmonella typhimurium LT2. Eur J Biochem. 1987 Jul 1;166(1):55–61. doi: 10.1111/j.1432-1033.1987.tb13483.x. [DOI] [PubMed] [Google Scholar]
  41. Nagy M., Le Gouar M., Potier S., Souciet J. L., Hervé G. The primary structure of the aspartate transcarbamylase region of the URA2 gene product in Saccharomyces cerevisiae. Features involved in activity and nuclear localization. J Biol Chem. 1989 May 15;264(14):8366–8374. [PubMed] [Google Scholar]
  42. Nasr F., Bertauche N., Dufour M. E., Minet M., Lacroute F. Heterospecific cloning of Arabidopsis thaliana cDNAs by direct complementation of pyrimidine auxotrophic mutants of Saccharomyces cerevisiae. I. Cloning and sequence analysis of two cDNAs catalysing the second, fifth and sixth steps of the de novo pyrimidine biosynthesis pathway. Mol Gen Genet. 1994 Jul 8;244(1):23–32. doi: 10.1007/BF00280183. [DOI] [PubMed] [Google Scholar]
  43. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  44. Nicholson H., Anderson D. E., Dao-pin S., Matthews B. W. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme. Biochemistry. 1991 Oct 15;30(41):9816–9828. doi: 10.1021/bi00105a002. [DOI] [PubMed] [Google Scholar]
  45. Nicholson H., Becktel W. J., Matthews B. W. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nature. 1988 Dec 15;336(6200):651–656. doi: 10.1038/336651a0. [DOI] [PubMed] [Google Scholar]
  46. Norberg P., Kaplan J. G., Kushner D. J. Kinetics and regulation of the salt-dependent aspartate transcarbamylase of Halobacterium cutirubrum. J Bacteriol. 1973 Feb;113(2):680–686. doi: 10.1128/jb.113.2.680-686.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Nowlan S. F., Kantrowitz E. R. Superproduction and rapid purification of Escherichia coli aspartate transcarbamylase and its catalytic subunit under extreme derepression of the pyrimidine pathway. J Biol Chem. 1985 Nov 25;260(27):14712–14716. [PubMed] [Google Scholar]
  48. Overduin B., Hogenhout S. A., van der Biezen E. A., Haring M. A., Nijkamp H. J., Hille J. The Asc locus for resistance to Alternaria stem canker in tomato does not encode the enzyme aspartate carbamoyltransferase. Mol Gen Genet. 1993 Jul;240(1):43–48. doi: 10.1007/BF00276882. [DOI] [PubMed] [Google Scholar]
  49. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  50. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  51. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  52. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  53. Rost B., Sander C., Schneider R. PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci. 1994 Feb;10(1):53–60. doi: 10.1093/bioinformatics/10.1.53. [DOI] [PubMed] [Google Scholar]
  54. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  55. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schachman H. K., Pauza C. D., Navre M., Karels M. J., Wu L., Yang Y. R. Location of amino acid alterations in mutants of aspartate transcarbamoylase: Structural aspects of interallelic complementation. Proc Natl Acad Sci U S A. 1984 Jan;81(1):115–119. doi: 10.1073/pnas.81.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Schurr M. J., Vickrey J. F., Kumar A. P., Campbell A. L., Cunin R., Benjamin R. C., Shanley M. S., O'Donovan G. A. Aspartate transcarbamoylase genes of Pseudomonas putida: requirement for an inactive dihydroorotase for assembly into the dodecameric holoenzyme. J Bacteriol. 1995 Apr;177(7):1751–1759. doi: 10.1128/jb.177.7.1751-1759.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Simmer J. P., Kelly R. E., Scully J. L., Grayson D. R., Rinker A. G., Jr, Bergh S. T., Evans D. R. Mammalian aspartate transcarbamylase (ATCase): sequence of the ATCase domain and interdomain linker in the CAD multifunctional polypeptide and properties of the isolated domain. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4382–4386. doi: 10.1073/pnas.86.12.4382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Souciet J. L., Nagy M., Le Gouar M., Lacroute F., Potier S. Organization of the yeast URA2 gene: identification of a defective dihydroorotase-like domain in the multifunctional carbamoylphosphate synthetase-aspartate transcarbamylase complex. Gene. 1989 Jun 30;79(1):59–70. doi: 10.1016/0378-1119(89)90092-9. [DOI] [PubMed] [Google Scholar]
  60. Stevens R. C., Chook Y. M., Cho C. Y., Lipscomb W. N., Kantrowitz E. R. Escherichia coli aspartate carbamoyltransferase: the probing of crystal structure analysis via site-specific mutagenesis. Protein Eng. 1991 Apr;4(4):391–408. doi: 10.1093/protein/4.4.391. [DOI] [PubMed] [Google Scholar]
  61. Stevens R. C., Gouaux J. E., Lipscomb W. N. Structural consequences of effector binding to the T state of aspartate carbamoyltransferase: crystal structures of the unligated and ATP- and CTP-complexed enzymes at 2.6-A resolution. Biochemistry. 1990 Aug 21;29(33):7691–7701. doi: 10.1021/bi00485a019. [DOI] [PubMed] [Google Scholar]
  62. Stevens R. C., Lipscomb W. N. A molecular mechanism for pyrimidine and purine nucleotide control of aspartate transcarbamoylase. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5281–5285. doi: 10.1073/pnas.89.12.5281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Walker J. E., Wonacott A. J., Harris J. I. Heat stability of a tetrameric enzyme, D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1980 Jul;108(2):581–586. doi: 10.1111/j.1432-1033.1980.tb04753.x. [DOI] [PubMed] [Google Scholar]
  64. Wild J. R., Wales M. E. Molecular evolution and genetic engineering of protein domains involving aspartate transcarbamoylase. Annu Rev Microbiol. 1990;44:193–218. doi: 10.1146/annurev.mi.44.100190.001205. [DOI] [PubMed] [Google Scholar]
  65. Wiley D. C., Lipscomb W. N. Crystallographic determination of symmetry of aspartate transcarbamylase. Nature. 1968 Jun 22;218(5147):1119–1121. doi: 10.1038/2181119a0. [DOI] [PubMed] [Google Scholar]
  66. Williamson C. L., Slocum R. D. Characterization of an aspartate transcarbamoylase cDNA from pea (Pisum sativum L.). Plant Physiol. 1993 Jul;102(3):1055–1056. doi: 10.1104/pp.102.3.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Williamson C. L., Slocum R. D. Isolation of cDNA clones by complementation of E. coli mutants with infective pBluescript phagemid libraries. Biotechniques. 1994 Jun;16(6):986–988. [PubMed] [Google Scholar]
  68. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
  69. Xi X. G., De Staercke C., Van Vliet F., Triniolles F., Jacobs A., Stas P. P., Ladjimi M. M., Simon V., Cunin R., Hervé G. The activation of Escherichia coli aspartate transcarbamylase by ATP. Specific involvement of helix H2' at the hydrophobic interface between the two domains of the regulatory chains. J Mol Biol. 1994 Sep 16;242(2):139–149. doi: 10.1006/jmbi.1994.1565. [DOI] [PubMed] [Google Scholar]
  70. Xi X. G., van Vliet F., Ladjimi M. M., de Wannemaeker B., de Staercke C., Glansdorff N., Piérard A., Cunin R., Hervé G. Heterotropic interactions in Escherichia coli aspartate transcarbamylase. Subunit interfaces involved in CTP inhibition and ATP activation. J Mol Biol. 1991 Aug 5;220(3):789–799. doi: 10.1016/0022-2836(91)90118-p. [DOI] [PubMed] [Google Scholar]
  71. Yutani K., Ogasahara K., Kimura A., Sugino Y. Effect of single amino acid substitutions at the same position on stability of a two-domain protein. J Mol Biol. 1982 Sep 15;160(2):387–390. doi: 10.1016/0022-2836(82)90184-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES