Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1990 Oct;65(10):1154–1157. doi: 10.1136/adc.65.10.1154

Red cell membrane sodium transport: possible genetic role and use in identifying patients at risk of essential hypertension.

J E Deal 1, V Shah 1, G Goodenough 1, M J Dillon 1
PMCID: PMC1792363  PMID: 2174226

Abstract

To investigate the influence of a family history of essential hypertension on abnormalities of red cell membrane sodium transport, 28 hypertensive children and their families were studied. In 15 families one or both parents had either essential hypertension or a strong family history. In 13 families neither parent had essential hypertension or a positive family history. There were significant differences between the children with a positive family history of essential hypertension compared with those without. Values are expressed as mean (SD): intracellular sodium concentration (mmol/l cells) 8.19 (2.18) compared with 6.41 (0.98); sodium efflux rate constant 0.4873 (0.1379) compared with 0.5831 (0.1104); and numbers of sodium-potassium ATPase pump sites (BMax) (nmol/l cells) 7.96 (1.71) compared with 9.56 (1.7). Significant differences were also found when the index hypertensive children were excluded and the normotensive siblings with and without hypertensive family histories were compared. These data suggest that abnormal red cell membrane sodium transport has a familial component, and although it is not caused by the hypertension it may be the earliest pathophysiological step in its development, perhaps allowing the identification of children at risk of essential hypertension.

Full text

PDF
1154

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aalkjaer C., Heagerty A. M., Parvin S. D., Bell P. R., Bing R. F., Swales J. D. Cell membrane sodium transport: a correlation between human resistance vessels and leucocytes. Lancet. 1986 Mar 22;1(8482):649–651. doi: 10.1016/s0140-6736(86)91726-5. [DOI] [PubMed] [Google Scholar]
  2. Ambrosioni E., Costa F. V., Montebugnoli L., Tartagni F., Magnani B. Increased intralymphocytic sodium content in essential hypertension: an index of impaired Na+ cellular metabolism. Clin Sci (Lond) 1981 Aug;61(2):181–186. doi: 10.1042/cs0610181. [DOI] [PubMed] [Google Scholar]
  3. Annest J. L., Sing C. F., Biron P., Mongeau J. G. Familial aggregation of blood pressure and weight in adoptive families. II. Estimation of the relative contributions of genetic and common environmental factors to blood pressure correlations between family members. Am J Epidemiol. 1979 Oct;110(4):492–503. doi: 10.1093/oxfordjournals.aje.a112830. [DOI] [PubMed] [Google Scholar]
  4. Blaustein M. P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol. 1977 May;232(5):C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [DOI] [PubMed] [Google Scholar]
  5. Canali M., Borghi L., Sani E., Curti A., Montanari A., Novarini A., Borghetti A. Increased erythrocyte lithium--sodium countertransport in essential hypertension: its relationship to family history of hypertension. Clin Sci (Lond) 1981 Dec;61 (Suppl 7):13s–15s. doi: 10.1042/cs061013s. [DOI] [PubMed] [Google Scholar]
  6. Canessa M., Adragna N., Solomon H. S., Connolly T. M., Tosteson D. C. Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med. 1980 Apr 3;302(14):772–776. doi: 10.1056/NEJM198004033021403. [DOI] [PubMed] [Google Scholar]
  7. Dillon M. J., Ryness J. M. Plasma renin activity and aldosterone concentration in children. Br Med J. 1975 Nov 8;4(5992):316–319. doi: 10.1136/bmj.4.5992.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edmondson R. P., Thomas R. D., Hilton P. J., Patrick J., Jones N. F. Abnormal leucocyte composition and sodium transport in essential hypertension. Lancet. 1975 May 3;1(7914):1003–1005. doi: 10.1016/s0140-6736(75)91947-9. [DOI] [PubMed] [Google Scholar]
  9. Garay R. P., Elghozi J. L., Dagher G., Meyer P. Laboratory distinction between essential and secondary hypertension by measurement of erythrocyte cation fluxes. N Engl J Med. 1980 Apr 3;302(14):769–771. doi: 10.1056/NEJM198004033021402. [DOI] [PubMed] [Google Scholar]
  10. LOSSE H., WEHMEYER H., WESSELS F. [The water- and electrolyte content of erythrocytes in arterial hypertension]. Klin Wochenschr. 1960 Apr 15;38:393–395. doi: 10.1007/BF01483466. [DOI] [PubMed] [Google Scholar]
  11. Lee Y. H., Rosner B., Gould J. B., Lowe E. W., Kass E. H. Familial aggregation of blood pressures of newborn infants and their mother. Pediatrics. 1976 Nov;58(5):722–729. [PubMed] [Google Scholar]
  12. Levine R. S., Hennekens C. H., Perry A., Cassady J., Gelband H., Jesse M. J. Genetic variance of blood pressure levels in infant twins. Am J Epidemiol. 1982 Nov;116(5):759–764. doi: 10.1093/oxfordjournals.aje.a113465. [DOI] [PubMed] [Google Scholar]
  13. McIlhany M. L., Shaffer J. W., Hines E. A., Jr The heritability of blood pressure: an investigation of 200 pairs of twins using the cold pressor test. Johns Hopkins Med J. 1975 Feb;136(2):57–64. [PubMed] [Google Scholar]
  14. Meyer P., Garay R. P., Nazaret C., Dagher G., Bellet M., Broyer M., Feingold J. Inheritance of abnormal erythrocyte cation transport in essential hypertension. Br Med J (Clin Res Ed) 1981 Apr 4;282(6270):1114–1117. doi: 10.1136/bmj.282.6270.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyao S., Furusho T. Genetic study of essential hypertension. Jpn Circ J. 1978 Oct;42(10):1161–1186. [PubMed] [Google Scholar]
  16. Svensson A., Sigström L. Blood pressure, erythrocyte sodium and potassium concentrations and Na+K+ATPase activity in children with hypertensive mothers. J Hypertens. 1986 Jun;4(3):269–272. doi: 10.1097/00004872-198606000-00003. [DOI] [PubMed] [Google Scholar]
  17. Trevisan M., Strazzullo P., Cappuccio F. P., Di Muro M. R., De Colle S., Franzese A., Iacone R., Krogh V. Red blood cell Na content, Na, Li-countertransport, family history of hypertension and blood pressure in school children. J Hypertens. 1988 Mar;6(3):227–230. doi: 10.1097/00004872-198803000-00007. [DOI] [PubMed] [Google Scholar]
  18. Uchiyama M., Shah V., Daman Willems C. E., Dillon M. J. Sodium transport in erythrocytes: differences between normal children and children with primary and secondary hypertension. Arch Dis Child. 1989 Feb;64(2):224–228. doi: 10.1136/adc.64.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Woods J. W., Falk R. J., Pittman A. W., Klemmer P. J., Watson B. S., Namboodiri K. Increased red-cell sodium-lithium countertransport in normotensive sons of hypertensive parents. N Engl J Med. 1982 Mar 11;306(10):593–595. doi: 10.1056/NEJM198203113061007. [DOI] [PubMed] [Google Scholar]
  20. Zinner S. H., Levy P. S., Kass E. H. Familial aggregation of blood pressure in childhood. N Engl J Med. 1971 Feb 25;284(8):401–404. doi: 10.1056/NEJM197102252840801. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES