Abstract
The regulatory protein P(II) has been studied in great detail in enteric bacteria; however, its function in photosynthetic bacteria has not been clearly established. As a number of these bacteria have been shown to regulate nitrogenase activity by a metabolic control system, it is of special interest to establish the role of P(II) in these diazotrophs. In this study, we show that P(II) in Rhodospirillum rubrum is modified in response to the N status in the cell and that addition of ammonium or glutamine leads to demodification. We also provide evidence that P(II) is uridylylated. In addition, we show that not only these compounds but also NAD+ promotes demodification of P(II), which is of particular interest as this pyridine nucleotide has been shown to act as a switch-off effector of nitrogenase. Demodification of P(II) by ammonium or NAD+ did not occur in cultures treated with an inhibitor of glutamine synthetase (methionine sulfoximine), whereas treatment with the glutamate synthase inhibitor 6-diazo-5-oxo-norleucine led to total demodification of P(II) without any other addition. The results indicate that P(II) probably is not directly involved in darkness switch-off of nitrogenase but that a role in ammonium switch-off cannot be excluded.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amar M., Patriarca E. J., Manco G., Bernard P., Riccio A., Lamberti A., Defez R., Iaccarino M. Regulation of nitrogen metabolism is altered in a glnB mutant strain of Rhizobium leguminosarum. Mol Microbiol. 1994 Feb;11(4):685–693. doi: 10.1111/j.1365-2958.1994.tb00346.x. [DOI] [PubMed] [Google Scholar]
- Arsene F., Kaminski P. A., Elmerich C. Modulation of NifA activity by PII in Azospirillum brasilense: evidence for a regulatory role of the NifA N-terminal domain. J Bacteriol. 1996 Aug;178(16):4830–4838. doi: 10.1128/jb.178.16.4830-4838.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlberg I., Nordlund S. Purification and partial characterization of glutamate synthase from Rhodospirillum rubrum grown under nitrogen-fixing conditions. Biochem J. 1991 Oct 1;279(Pt 1):151–154. doi: 10.1042/bj2790151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colonna-Romano S., Patriarca E. J., Amar M., Bernard P., Manco G., Lamberti A., Iaccarino M., Defez R. Uridylylation of the PII protein in Rhizobium leguminosarum. FEBS Lett. 1993 Sep 6;330(1):95–98. doi: 10.1016/0014-5793(93)80927-m. [DOI] [PubMed] [Google Scholar]
- Edwards R., Merrick M. The role of uridylyltransferase in the control of Klebsiella pneumoniae nif gene regulation. Mol Gen Genet. 1995 Apr 20;247(2):189–198. doi: 10.1007/BF00705649. [DOI] [PubMed] [Google Scholar]
- Forchhammer K., Tandeau de Marsac N. Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol. 1995 Apr;177(8):2033–2040. doi: 10.1128/jb.177.8.2033-2040.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forchhammer K., Tandeau de Marsac N. Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: analysis of in vitro kinase activity. J Bacteriol. 1995 Oct;177(20):5812–5817. doi: 10.1128/jb.177.20.5812-5817.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forchhammer K., Tandeau de Marsac N. The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bacteriol. 1994 Jan;176(1):84–91. doi: 10.1128/jb.176.1.84-91.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster-Hartnett D., Kranz R. G. The Rhodobacter capsulatus glnB gene is regulated by NtrC at tandem rpoN-independent promoters. J Bacteriol. 1994 Aug;176(16):5171–5176. doi: 10.1128/jb.176.16.5171-5176.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammarström A., Soliman A., Nordlund S. Low- and high-activity forms of glutamine synthetase from Rhodospirillum rubrum: sensitivity to feed-back effectors and activation of the low-activity form. Biochim Biophys Acta. 1991 Nov 15;1080(3):259–263. doi: 10.1016/0167-4838(91)90011-n. [DOI] [PubMed] [Google Scholar]
- Holtel A., Merrick M. Identification of the Klebsiella pneumoniae glnB gene: nucleotide sequence of wild-type and mutant alleles. Mol Gen Genet. 1988 Dec;215(1):134–138. doi: 10.1007/BF00331314. [DOI] [PubMed] [Google Scholar]
- Jackson J. B., Crofts A. R. Energy-linked reduction of nicotinamide adenine dinucleotides in cells of Rhodospirillum rubrum. Biochem Biophys Res Commun. 1968 Sep 30;32(6):908–915. doi: 10.1016/0006-291x(68)90113-7. [DOI] [PubMed] [Google Scholar]
- Johansson M., Nordlund S. Transcription of the glnB and glnA genes in the photosynthetic bacterium Rhodospirillum rubrum. Microbiology. 1996 May;142(Pt 5):1265–1272. doi: 10.1099/13500872-142-5-1265. [DOI] [PubMed] [Google Scholar]
- Kamberov E. S., Atkinson M. R., Feng J., Chandran P., Ninfa A. J. Sensory components controlling bacterial nitrogen assimilation. Cell Mol Biol Res. 1994;40(3):175–191. [PubMed] [Google Scholar]
- Kamberov E. S., Atkinson M. R., Ninfa A. J. The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J Biol Chem. 1995 Jul 28;270(30):17797–17807. doi: 10.1074/jbc.270.30.17797. [DOI] [PubMed] [Google Scholar]
- Liu Y., Kahn M. L. ADP-ribosylation of Rhizobium meliloti glutamine synthetase III in vivo. J Biol Chem. 1995 Jan 27;270(4):1624–1628. doi: 10.1074/jbc.270.4.1624. [DOI] [PubMed] [Google Scholar]
- Ludden P. W., Roberts G. P. Regulation of nitrogenase activity by reversible ADP ribosylation. Curr Top Cell Regul. 1989;30:23–56. doi: 10.1016/b978-0-12-152830-0.50004-9. [DOI] [PubMed] [Google Scholar]
- Magasanik B. Regulation of transcription of the glnALG operon of Escherichia coli by protein phosphorylation. Biochimie. 1989 Sep-Oct;71(9-10):1005–1012. doi: 10.1016/0300-9084(89)90104-1. [DOI] [PubMed] [Google Scholar]
- Martin G. B., Thomashow M. F., Chelm B. K. Bradyrhizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters. J Bacteriol. 1989 Oct;171(10):5638–5645. doi: 10.1128/jb.171.10.5638-5645.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minchin S. D., Austin S., Dixon R. A. Transcriptional activation of the Klebsiella pneumoniae nifLA promoter by NTRC is face-of-the-helix dependent and the activator stabilizes the interaction of sigma 54-RNA polymerase with the promoter. EMBO J. 1989 Nov;8(11):3491–3499. doi: 10.1002/j.1460-2075.1989.tb08514.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordlund S., Kanemoto R. H., Murrell S. A., Ludden P. W. Properties and regulation of glutamine synthetase from Rhodospirillum rubrum. J Bacteriol. 1985 Jan;161(1):13–17. doi: 10.1128/jb.161.1.13-17.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norén A., Nordlund S. Changes in the NAD(P)H concentration caused by addition of nitrogenase 'switch-off' effectors in Rhodospirillum rubrum G-9, as measured by fluorescence. FEBS Lett. 1994 Dec 12;356(1):43–45. doi: 10.1016/0014-5793(94)01233-4. [DOI] [PubMed] [Google Scholar]
- ORMEROD J. G., ORMEROD K. S., GEST H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961 Sep;94:449–463. doi: 10.1016/0003-9861(61)90073-x. [DOI] [PubMed] [Google Scholar]
- Rhee S. G., Chock P. B., Stadtman E. R. Regulation of Escherichia coli glutamine synthetase. Adv Enzymol Relat Areas Mol Biol. 1989;62:37–92. doi: 10.1002/9780470123089.ch2. [DOI] [PubMed] [Google Scholar]
- Soliman A., Nordlund S. Purification and partial characterization of glutamine synthetase from the photosynthetic bacterium Rhodospirillum rubrum. Biochim Biophys Acta. 1989 Feb 2;994(2):138–141. doi: 10.1016/0167-4838(89)90152-0. [DOI] [PubMed] [Google Scholar]
- Soliman A., Nordlund S. Studies on the effect of NAD(H) on nitrogenase activity in Rhodospirillum rubrum. Arch Microbiol. 1992;157(5):431–435. doi: 10.1007/BF00249100. [DOI] [PubMed] [Google Scholar]
- Vasudevan S. G., Gedye C., Dixon N. E., Cheah E., Carr P. D., Suffolk P. M., Jeffrey P. D., Ollis D. L. Escherichia coli PII protein: purification, crystallization and oligomeric structure. FEBS Lett. 1994 Jan 17;337(3):255–258. doi: 10.1016/0014-5793(94)80203-3. [DOI] [PubMed] [Google Scholar]
- Woehle D. L., Lueddecke B. A., Ludden P. W. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro. J Biol Chem. 1990 Aug 15;265(23):13741–13749. [PubMed] [Google Scholar]
- Zhang Y., Cummings A. D., Burris R. H., Ludden P. W., Roberts G. P. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. J Bacteriol. 1995 Sep;177(18):5322–5326. doi: 10.1128/jb.177.18.5322-5326.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zumft W. G., Castillo F. Regulatory properties of the nitrogenase from Rhodopseudomonas palustris. Arch Microbiol. 1978 Apr 27;117(1):53–60. doi: 10.1007/BF00689351. [DOI] [PubMed] [Google Scholar]
- van Heeswijk W. C., Hoving S., Molenaar D., Stegeman B., Kahn D., Westerhoff H. V. An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol. 1996 Jul;21(1):133–146. doi: 10.1046/j.1365-2958.1996.6281349.x. [DOI] [PubMed] [Google Scholar]